Properties

Label 8-1950e4-1.1-c1e4-0-23
Degree $8$
Conductor $1.446\times 10^{13}$
Sign $1$
Analytic cond. $58782.3$
Root an. cond. $3.94598$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·3-s − 2·4-s + 10·9-s − 8·12-s + 3·16-s − 4·17-s + 20·23-s + 20·27-s + 4·29-s − 20·36-s − 32·43-s + 12·48-s − 16·51-s − 24·53-s − 16·61-s − 4·64-s + 8·68-s + 80·69-s + 35·81-s + 16·87-s − 40·92-s − 44·101-s + 16·103-s − 40·108-s + 12·113-s − 8·116-s + 44·121-s + ⋯
L(s)  = 1  + 2.30·3-s − 4-s + 10/3·9-s − 2.30·12-s + 3/4·16-s − 0.970·17-s + 4.17·23-s + 3.84·27-s + 0.742·29-s − 3.33·36-s − 4.87·43-s + 1.73·48-s − 2.24·51-s − 3.29·53-s − 2.04·61-s − 1/2·64-s + 0.970·68-s + 9.63·69-s + 35/9·81-s + 1.71·87-s − 4.17·92-s − 4.37·101-s + 1.57·103-s − 3.84·108-s + 1.12·113-s − 0.742·116-s + 4·121-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 5^{8} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 5^{8} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 3^{4} \cdot 5^{8} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(58782.3\)
Root analytic conductor: \(3.94598\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 3^{4} \cdot 5^{8} \cdot 13^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(5.900510135\)
\(L(\frac12)\) \(\approx\) \(5.900510135\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 + T^{2} )^{2} \)
3$C_1$ \( ( 1 - T )^{4} \)
5 \( 1 \)
13$C_2$ \( ( 1 - p T^{2} )^{2} \)
good7$C_2^2$$\times$$C_2^2$ \( ( 1 - 2 T + 2 T^{2} - 2 p T^{3} + p^{2} T^{4} )( 1 + 2 T + 2 T^{2} + 2 p T^{3} + p^{2} T^{4} ) \)
11$C_2$ \( ( 1 - p T^{2} )^{4} \)
17$D_{4}$ \( ( 1 + 2 T + 22 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
19$D_4\times C_2$ \( 1 - 48 T^{2} + 1246 T^{4} - 48 p^{2} T^{6} + p^{4} T^{8} \)
23$D_{4}$ \( ( 1 - 10 T + 58 T^{2} - 10 p T^{3} + p^{2} T^{4} )^{2} \)
29$D_{4}$ \( ( 1 - 2 T + 46 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 - 26 T^{2} + p^{2} T^{4} )^{2} \)
37$D_4\times C_2$ \( 1 - 36 T^{2} + 2230 T^{4} - 36 p^{2} T^{6} + p^{4} T^{8} \)
41$D_4\times C_2$ \( 1 - 28 T^{2} + 230 T^{4} - 28 p^{2} T^{6} + p^{4} T^{8} \)
43$C_2$ \( ( 1 + 8 T + p T^{2} )^{4} \)
47$D_4\times C_2$ \( 1 - 76 T^{2} + 5030 T^{4} - 76 p^{2} T^{6} + p^{4} T^{8} \)
53$C_2$ \( ( 1 + 6 T + p T^{2} )^{4} \)
59$D_4\times C_2$ \( 1 - 124 T^{2} + 9974 T^{4} - 124 p^{2} T^{6} + p^{4} T^{8} \)
61$D_{4}$ \( ( 1 + 8 T + 86 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{2} \)
67$D_4\times C_2$ \( 1 - 132 T^{2} + 10006 T^{4} - 132 p^{2} T^{6} + p^{4} T^{8} \)
71$D_4\times C_2$ \( 1 - 172 T^{2} + 16646 T^{4} - 172 p^{2} T^{6} + p^{4} T^{8} \)
73$D_4\times C_2$ \( 1 - 216 T^{2} + 21022 T^{4} - 216 p^{2} T^{6} + p^{4} T^{8} \)
79$C_2^2$ \( ( 1 - 50 T^{2} + p^{2} T^{4} )^{2} \)
83$D_4\times C_2$ \( 1 - 28 T^{2} - 6826 T^{4} - 28 p^{2} T^{6} + p^{4} T^{8} \)
89$D_4\times C_2$ \( 1 - 124 T^{2} + 6374 T^{4} - 124 p^{2} T^{6} + p^{4} T^{8} \)
97$D_4\times C_2$ \( 1 - 312 T^{2} + 41854 T^{4} - 312 p^{2} T^{6} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.84312221597269205843797275719, −6.29011593065188401812238925527, −6.22420389064173470069771826794, −5.95346426375846843507057266931, −5.63489092925202566628667700759, −5.42604272272907554319016985050, −4.95922689061128231617247030263, −4.70754746366557470192239716234, −4.69797069752167179308593187933, −4.67349646083220932559689189366, −4.65891843262147813886325007731, −4.20843723232626618347097079893, −3.62652705167760180808300020464, −3.48752189985253012042042503852, −3.32477372344949089044051845598, −3.29193333186213728188301094203, −3.00251616478735544647298974404, −2.70613641588438421311108869219, −2.69830541979073193496203521080, −1.87600191227419803787448943768, −1.87123463342331502262106039997, −1.67856806084251347399750267055, −1.25453944220236276667067501143, −0.891295285628353587483195737751, −0.34965443300621170534743459332, 0.34965443300621170534743459332, 0.891295285628353587483195737751, 1.25453944220236276667067501143, 1.67856806084251347399750267055, 1.87123463342331502262106039997, 1.87600191227419803787448943768, 2.69830541979073193496203521080, 2.70613641588438421311108869219, 3.00251616478735544647298974404, 3.29193333186213728188301094203, 3.32477372344949089044051845598, 3.48752189985253012042042503852, 3.62652705167760180808300020464, 4.20843723232626618347097079893, 4.65891843262147813886325007731, 4.67349646083220932559689189366, 4.69797069752167179308593187933, 4.70754746366557470192239716234, 4.95922689061128231617247030263, 5.42604272272907554319016985050, 5.63489092925202566628667700759, 5.95346426375846843507057266931, 6.22420389064173470069771826794, 6.29011593065188401812238925527, 6.84312221597269205843797275719

Graph of the $Z$-function along the critical line