Properties

Label 8-1950e4-1.1-c1e4-0-21
Degree $8$
Conductor $1.446\times 10^{13}$
Sign $1$
Analytic cond. $58782.3$
Root an. cond. $3.94598$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 2·3-s + 4-s − 4·6-s + 4·7-s + 2·8-s + 9-s − 2·11-s + 2·12-s − 6·13-s − 8·14-s − 4·16-s + 4·17-s − 2·18-s − 4·19-s + 8·21-s + 4·22-s − 2·23-s + 4·24-s + 12·26-s − 2·27-s + 4·28-s + 4·29-s − 16·31-s + 2·32-s − 4·33-s − 8·34-s + ⋯
L(s)  = 1  − 1.41·2-s + 1.15·3-s + 1/2·4-s − 1.63·6-s + 1.51·7-s + 0.707·8-s + 1/3·9-s − 0.603·11-s + 0.577·12-s − 1.66·13-s − 2.13·14-s − 16-s + 0.970·17-s − 0.471·18-s − 0.917·19-s + 1.74·21-s + 0.852·22-s − 0.417·23-s + 0.816·24-s + 2.35·26-s − 0.384·27-s + 0.755·28-s + 0.742·29-s − 2.87·31-s + 0.353·32-s − 0.696·33-s − 1.37·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 5^{8} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 5^{8} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 3^{4} \cdot 5^{8} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(58782.3\)
Root analytic conductor: \(3.94598\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 3^{4} \cdot 5^{8} \cdot 13^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(1.060221157\)
\(L(\frac12)\) \(\approx\) \(1.060221157\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 + T + T^{2} )^{2} \)
3$C_2$ \( ( 1 - T + T^{2} )^{2} \)
5 \( 1 \)
13$C_2^2$ \( 1 + 6 T + 25 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
good7$C_2^3$ \( 1 - 4 T + 8 T^{2} + 24 T^{3} - 97 T^{4} + 24 p T^{5} + 8 p^{2} T^{6} - 4 p^{3} T^{7} + p^{4} T^{8} \)
11$C_2^2$ \( ( 1 + T - 10 T^{2} + p T^{3} + p^{2} T^{4} )^{2} \)
17$D_4\times C_2$ \( 1 - 4 T - 12 T^{2} + 24 T^{3} + 223 T^{4} + 24 p T^{5} - 12 p^{2} T^{6} - 4 p^{3} T^{7} + p^{4} T^{8} \)
19$D_4\times C_2$ \( 1 + 4 T - 16 T^{2} - 24 T^{3} + 359 T^{4} - 24 p T^{5} - 16 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} \)
23$D_4\times C_2$ \( 1 + 2 T - 33 T^{2} - 18 T^{3} + 748 T^{4} - 18 p T^{5} - 33 p^{2} T^{6} + 2 p^{3} T^{7} + p^{4} T^{8} \)
29$D_4\times C_2$ \( 1 - 4 T - 6 T^{2} + 144 T^{3} - 821 T^{4} + 144 p T^{5} - 6 p^{2} T^{6} - 4 p^{3} T^{7} + p^{4} T^{8} \)
31$D_{4}$ \( ( 1 + 8 T + 68 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{2} \)
37$D_4\times C_2$ \( 1 - 6 T - p T^{2} + 6 T^{3} + 2628 T^{4} + 6 p T^{5} - p^{3} T^{6} - 6 p^{3} T^{7} + p^{4} T^{8} \)
41$D_4\times C_2$ \( 1 + 4 T - 60 T^{2} - 24 T^{3} + 3439 T^{4} - 24 p T^{5} - 60 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} \)
43$C_2^3$ \( 1 - 76 T^{2} + 3927 T^{4} - 76 p^{2} T^{6} + p^{4} T^{8} \)
47$C_2$ \( ( 1 + 6 T + p T^{2} )^{4} \)
53$D_{4}$ \( ( 1 - 4 T + 20 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 + 10 T + 41 T^{2} + 10 p T^{3} + p^{2} T^{4} )^{2} \)
61$D_4\times C_2$ \( 1 + 6 T - 85 T^{2} - 6 T^{3} + 8724 T^{4} - 6 p T^{5} - 85 p^{2} T^{6} + 6 p^{3} T^{7} + p^{4} T^{8} \)
67$C_2^2$ \( ( 1 - p T^{2} + p^{2} T^{4} )^{2} \)
71$D_4\times C_2$ \( 1 + 2 T - 49 T^{2} - 178 T^{3} - 2516 T^{4} - 178 p T^{5} - 49 p^{2} T^{6} + 2 p^{3} T^{7} + p^{4} T^{8} \)
73$D_{4}$ \( ( 1 - 6 T + 115 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2} \)
79$D_{4}$ \( ( 1 + 8 T + 84 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{2} \)
83$C_2$ \( ( 1 + 9 T + p T^{2} )^{4} \)
89$D_4\times C_2$ \( 1 - 4 T - 76 T^{2} + 344 T^{3} - 881 T^{4} + 344 p T^{5} - 76 p^{2} T^{6} - 4 p^{3} T^{7} + p^{4} T^{8} \)
97$D_4\times C_2$ \( 1 + 2 T - 151 T^{2} - 78 T^{3} + 14228 T^{4} - 78 p T^{5} - 151 p^{2} T^{6} + 2 p^{3} T^{7} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.68285294797155454505361840911, −6.25686207702355435639995207501, −6.15518262232401522170526628996, −6.10580767405119991570526807879, −5.47776282318177049317905358576, −5.33664182764822512454872074604, −5.32880741872113561338275996982, −5.08754041212455180151203209285, −4.85700934350983318777351197124, −4.55224326533151937581132194410, −4.32544095690904126012955567355, −4.20697970004621615522360582663, −3.96604971053456952418815318841, −3.59902653770573218864635646900, −3.35575679879851444754532898587, −2.91927798273618170141273003814, −2.84729153795899738508085833289, −2.72168741633367629780593088665, −2.30976443457264989185651218038, −1.77593064662545081790540316460, −1.75842472849520772257985959144, −1.60118504066294741333092796345, −1.41891922667167904604615989738, −0.47231651564855865962644614440, −0.33103585690432303766021295032, 0.33103585690432303766021295032, 0.47231651564855865962644614440, 1.41891922667167904604615989738, 1.60118504066294741333092796345, 1.75842472849520772257985959144, 1.77593064662545081790540316460, 2.30976443457264989185651218038, 2.72168741633367629780593088665, 2.84729153795899738508085833289, 2.91927798273618170141273003814, 3.35575679879851444754532898587, 3.59902653770573218864635646900, 3.96604971053456952418815318841, 4.20697970004621615522360582663, 4.32544095690904126012955567355, 4.55224326533151937581132194410, 4.85700934350983318777351197124, 5.08754041212455180151203209285, 5.32880741872113561338275996982, 5.33664182764822512454872074604, 5.47776282318177049317905358576, 6.10580767405119991570526807879, 6.15518262232401522170526628996, 6.25686207702355435639995207501, 6.68285294797155454505361840911

Graph of the $Z$-function along the critical line