Properties

Label 8-1900e4-1.1-c3e4-0-0
Degree $8$
Conductor $1.303\times 10^{13}$
Sign $1$
Analytic cond. $1.57935\times 10^{8}$
Root an. cond. $10.5879$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 79·9-s − 142·11-s + 76·19-s − 310·29-s − 176·31-s − 284·41-s + 658·49-s + 1.74e3·59-s + 890·61-s − 3.42e3·71-s + 2.54e3·79-s + 3.42e3·81-s + 1.77e3·89-s − 1.12e4·99-s + 4.11e3·101-s + 2.65e3·109-s + 7.69e3·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 6.17e3·169-s + ⋯
L(s)  = 1  + 2.92·9-s − 3.89·11-s + 0.917·19-s − 1.98·29-s − 1.01·31-s − 1.08·41-s + 1.91·49-s + 3.85·59-s + 1.86·61-s − 5.72·71-s + 3.62·79-s + 4.70·81-s + 2.11·89-s − 11.3·99-s + 4.05·101-s + 2.33·109-s + 5.77·121-s + 0.000698·127-s + 0.000666·131-s + 0.000623·137-s + 0.000610·139-s + 0.000549·149-s + 0.000538·151-s + 0.000508·157-s + 0.000480·163-s + 0.000463·167-s + 2.81·169-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 5^{8} \cdot 19^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(4-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 5^{8} \cdot 19^{4}\right)^{s/2} \, \Gamma_{\C}(s+3/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{8} \cdot 5^{8} \cdot 19^{4}\)
Sign: $1$
Analytic conductor: \(1.57935\times 10^{8}\)
Root analytic conductor: \(10.5879\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{8} \cdot 5^{8} \cdot 19^{4} ,\ ( \ : 3/2, 3/2, 3/2, 3/2 ),\ 1 )\)

Particular Values

\(L(2)\) \(\approx\) \(8.904896719\)
\(L(\frac12)\) \(\approx\) \(8.904896719\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
19$C_1$ \( ( 1 - p T )^{4} \)
good3$D_4\times C_2$ \( 1 - 79 T^{2} + 2812 T^{4} - 79 p^{6} T^{6} + p^{12} T^{8} \)
7$D_4\times C_2$ \( 1 - 94 p T^{2} + 224739 T^{4} - 94 p^{7} T^{6} + p^{12} T^{8} \)
11$D_{4}$ \( ( 1 + 71 T + 3716 T^{2} + 71 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
13$D_4\times C_2$ \( 1 - 6179 T^{2} + 17975772 T^{4} - 6179 p^{6} T^{6} + p^{12} T^{8} \)
17$C_2^2$ \( ( 1 - 9529 T^{2} + p^{6} T^{4} )^{2} \)
23$D_4\times C_2$ \( 1 + 8781 T^{2} + 314630312 T^{4} + 8781 p^{6} T^{6} + p^{12} T^{8} \)
29$D_{4}$ \( ( 1 + 155 T + 19928 T^{2} + 155 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
31$D_{4}$ \( ( 1 + 88 T + 8718 T^{2} + 88 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
37$D_4\times C_2$ \( 1 - 129356 T^{2} + 9238453302 T^{4} - 129356 p^{6} T^{6} + p^{12} T^{8} \)
41$D_{4}$ \( ( 1 + 142 T + 135458 T^{2} + 142 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
43$D_4\times C_2$ \( 1 - 80147 T^{2} + 11535366144 T^{4} - 80147 p^{6} T^{6} + p^{12} T^{8} \)
47$D_4\times C_2$ \( 1 - 303051 T^{2} + 43614898952 T^{4} - 303051 p^{6} T^{6} + p^{12} T^{8} \)
53$D_4\times C_2$ \( 1 - 308067 T^{2} + 58615963724 T^{4} - 308067 p^{6} T^{6} + p^{12} T^{8} \)
59$D_{4}$ \( ( 1 - 873 T + 591184 T^{2} - 873 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
61$D_{4}$ \( ( 1 - 445 T + 250812 T^{2} - 445 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
67$D_4\times C_2$ \( 1 - 933643 T^{2} + 386067837744 T^{4} - 933643 p^{6} T^{6} + p^{12} T^{8} \)
71$D_{4}$ \( ( 1 + 1712 T + 1445258 T^{2} + 1712 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
73$D_4\times C_2$ \( 1 - 998434 T^{2} + 518766526467 T^{4} - 998434 p^{6} T^{6} + p^{12} T^{8} \)
79$D_{4}$ \( ( 1 - 1274 T + 1391022 T^{2} - 1274 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
83$D_4\times C_2$ \( 1 - 2068664 T^{2} + 1722854975262 T^{4} - 2068664 p^{6} T^{6} + p^{12} T^{8} \)
89$D_{4}$ \( ( 1 - 888 T + 1554274 T^{2} - 888 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
97$D_4\times C_2$ \( 1 + 62464 T^{2} + 794547680382 T^{4} + 62464 p^{6} T^{6} + p^{12} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.24812399232755135755785153353, −5.70227832510578812644076185508, −5.57840711714795221871161933070, −5.53558858856836367447205503949, −5.47735272200369880913907269576, −5.03292400527753637608895904662, −4.99679236609114953644374533669, −4.67945618468807038191642010851, −4.56279733457070445615248073564, −4.18615505880524198882427708013, −4.01408167737283876288449496484, −3.85225537827942747335644552577, −3.38731764849325305973002141995, −3.36359321171268806717208166368, −3.15759520499613650040878052453, −2.64459952375939956105287643850, −2.54933027904869638515613247901, −2.11638641716461246127656516277, −1.95027329829287005412447894770, −1.79232660886390619511645844307, −1.71690714576729488530511716762, −0.956144762180761604091990959191, −0.70642516356963446410315979141, −0.49531504284083197837964002502, −0.42312241808437623050202799728, 0.42312241808437623050202799728, 0.49531504284083197837964002502, 0.70642516356963446410315979141, 0.956144762180761604091990959191, 1.71690714576729488530511716762, 1.79232660886390619511645844307, 1.95027329829287005412447894770, 2.11638641716461246127656516277, 2.54933027904869638515613247901, 2.64459952375939956105287643850, 3.15759520499613650040878052453, 3.36359321171268806717208166368, 3.38731764849325305973002141995, 3.85225537827942747335644552577, 4.01408167737283876288449496484, 4.18615505880524198882427708013, 4.56279733457070445615248073564, 4.67945618468807038191642010851, 4.99679236609114953644374533669, 5.03292400527753637608895904662, 5.47735272200369880913907269576, 5.53558858856836367447205503949, 5.57840711714795221871161933070, 5.70227832510578812644076185508, 6.24812399232755135755785153353

Graph of the $Z$-function along the critical line