Properties

Label 8-1900e4-1.1-c1e4-0-3
Degree $8$
Conductor $1.303\times 10^{13}$
Sign $1$
Analytic cond. $52981.3$
Root an. cond. $3.89507$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·11-s + 4·19-s − 8·29-s − 16·31-s − 8·41-s + 4·49-s − 32·59-s − 32·61-s + 32·71-s + 16·79-s + 14·81-s − 8·89-s + 16·101-s + 24·109-s − 4·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 8·169-s + 173-s + 179-s + ⋯
L(s)  = 1  − 2.41·11-s + 0.917·19-s − 1.48·29-s − 2.87·31-s − 1.24·41-s + 4/7·49-s − 4.16·59-s − 4.09·61-s + 3.79·71-s + 1.80·79-s + 14/9·81-s − 0.847·89-s + 1.59·101-s + 2.29·109-s − 0.363·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 8/13·169-s + 0.0760·173-s + 0.0747·179-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 5^{8} \cdot 19^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 5^{8} \cdot 19^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{8} \cdot 5^{8} \cdot 19^{4}\)
Sign: $1$
Analytic conductor: \(52981.3\)
Root analytic conductor: \(3.89507\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{8} \cdot 5^{8} \cdot 19^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(1.135861415\)
\(L(\frac12)\) \(\approx\) \(1.135861415\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
19$C_1$ \( ( 1 - T )^{4} \)
good3$C_2^2$$\times$$C_2^2$ \( ( 1 - 4 T + 8 T^{2} - 4 p T^{3} + p^{2} T^{4} )( 1 + 4 T + 8 T^{2} + 4 p T^{3} + p^{2} T^{4} ) \)
7$C_4\times C_2$ \( 1 - 4 T^{2} - 26 T^{4} - 4 p^{2} T^{6} + p^{4} T^{8} \)
11$C_2$ \( ( 1 + 2 T + p T^{2} )^{4} \)
13$D_4\times C_2$ \( 1 - 8 T^{2} + 66 T^{4} - 8 p^{2} T^{6} + p^{4} T^{8} \)
17$D_4\times C_2$ \( 1 - 44 T^{2} + 934 T^{4} - 44 p^{2} T^{6} + p^{4} T^{8} \)
23$C_2^2$ \( ( 1 - 10 T^{2} + p^{2} T^{4} )^{2} \)
29$D_{4}$ \( ( 1 + 4 T - 10 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
31$D_{4}$ \( ( 1 + 8 T + 70 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{2} \)
37$D_4\times C_2$ \( 1 - 40 T^{2} + 546 T^{4} - 40 p^{2} T^{6} + p^{4} T^{8} \)
41$D_{4}$ \( ( 1 + 4 T + 54 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
43$D_4\times C_2$ \( 1 - 148 T^{2} + 9046 T^{4} - 148 p^{2} T^{6} + p^{4} T^{8} \)
47$D_4\times C_2$ \( 1 - 164 T^{2} + 11014 T^{4} - 164 p^{2} T^{6} + p^{4} T^{8} \)
53$D_4\times C_2$ \( 1 - 104 T^{2} + 7522 T^{4} - 104 p^{2} T^{6} + p^{4} T^{8} \)
59$D_{4}$ \( ( 1 + 16 T + 150 T^{2} + 16 p T^{3} + p^{2} T^{4} )^{2} \)
61$D_{4}$ \( ( 1 + 16 T + 154 T^{2} + 16 p T^{3} + p^{2} T^{4} )^{2} \)
67$D_4\times C_2$ \( 1 - 256 T^{2} + 25330 T^{4} - 256 p^{2} T^{6} + p^{4} T^{8} \)
71$D_{4}$ \( ( 1 - 16 T + 198 T^{2} - 16 p T^{3} + p^{2} T^{4} )^{2} \)
73$D_4\times C_2$ \( 1 - 76 T^{2} + 1734 T^{4} - 76 p^{2} T^{6} + p^{4} T^{8} \)
79$D_{4}$ \( ( 1 - 8 T + 142 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{2} \)
83$D_4\times C_2$ \( 1 - 68 T^{2} + 12886 T^{4} - 68 p^{2} T^{6} + p^{4} T^{8} \)
89$D_{4}$ \( ( 1 + 4 T + 110 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
97$D_4\times C_2$ \( 1 - 280 T^{2} + 35826 T^{4} - 280 p^{2} T^{6} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.31122210658978051780581285669, −6.30208408258863143993010291043, −6.30083966969604342660653094607, −5.80011625532092285750856883137, −5.55695153622371043713285044332, −5.51093407788726407953362736484, −5.47138925203447059176193359816, −4.83156699223862316259037237170, −4.82235230169950396525764833131, −4.81851264190098231838596317870, −4.70788287172161161676475745778, −4.02068940598534697596547161893, −3.89838532985512108090909406237, −3.56433024233249576319646014572, −3.31064518014614791860158522328, −3.29583035949237515835783238268, −3.08389291244899957566431123968, −2.60593289889015598548523966471, −2.35724105000585277455318473274, −2.15920137626435536748547054814, −1.70306319486223363962787945059, −1.69876894568532541943955976164, −1.26901289972120952857082027657, −0.43965891675723827178753030623, −0.32077540743513859221672103138, 0.32077540743513859221672103138, 0.43965891675723827178753030623, 1.26901289972120952857082027657, 1.69876894568532541943955976164, 1.70306319486223363962787945059, 2.15920137626435536748547054814, 2.35724105000585277455318473274, 2.60593289889015598548523966471, 3.08389291244899957566431123968, 3.29583035949237515835783238268, 3.31064518014614791860158522328, 3.56433024233249576319646014572, 3.89838532985512108090909406237, 4.02068940598534697596547161893, 4.70788287172161161676475745778, 4.81851264190098231838596317870, 4.82235230169950396525764833131, 4.83156699223862316259037237170, 5.47138925203447059176193359816, 5.51093407788726407953362736484, 5.55695153622371043713285044332, 5.80011625532092285750856883137, 6.30083966969604342660653094607, 6.30208408258863143993010291043, 6.31122210658978051780581285669

Graph of the $Z$-function along the critical line