Properties

Label 8-18e4-1.1-c3e4-0-0
Degree $8$
Conductor $104976$
Sign $1$
Analytic cond. $1.27219$
Root an. cond. $1.03055$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s + 3·3-s + 4·4-s + 9·5-s + 12·6-s − 19·7-s − 16·8-s − 21·9-s + 36·10-s + 24·11-s + 12·12-s − 61·13-s − 76·14-s + 27·15-s − 64·16-s + 6·17-s − 84·18-s + 266·19-s + 36·20-s − 57·21-s + 96·22-s − 69·23-s − 48·24-s + 34·25-s − 244·26-s − 72·27-s − 76·28-s + ⋯
L(s)  = 1  + 1.41·2-s + 0.577·3-s + 1/2·4-s + 0.804·5-s + 0.816·6-s − 1.02·7-s − 0.707·8-s − 7/9·9-s + 1.13·10-s + 0.657·11-s + 0.288·12-s − 1.30·13-s − 1.45·14-s + 0.464·15-s − 16-s + 0.0856·17-s − 1.09·18-s + 3.21·19-s + 0.402·20-s − 0.592·21-s + 0.930·22-s − 0.625·23-s − 0.408·24-s + 0.271·25-s − 1.84·26-s − 0.513·27-s − 0.512·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 104976 ^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 104976 ^{s/2} \, \Gamma_{\C}(s+3/2)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(104976\)    =    \(2^{4} \cdot 3^{8}\)
Sign: $1$
Analytic conductor: \(1.27219\)
Root analytic conductor: \(1.03055\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: induced by $\chi_{18} (1, \cdot )$
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 104976,\ (\ :3/2, 3/2, 3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.221061581\)
\(L(\frac12)\) \(\approx\) \(2.221061581\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 - p T + p^{2} T^{2} )^{2} \)
3$C_2^2$ \( 1 - p T + 10 p T^{2} - p^{4} T^{3} + p^{6} T^{4} \)
good5$D_4\times C_2$ \( 1 - 9 T + 47 T^{2} + 1944 T^{3} - 24594 T^{4} + 1944 p^{3} T^{5} + 47 p^{6} T^{6} - 9 p^{9} T^{7} + p^{12} T^{8} \)
7$D_4\times C_2$ \( 1 + 19 T - 179 T^{2} - 2774 T^{3} + 50128 T^{4} - 2774 p^{3} T^{5} - 179 p^{6} T^{6} + 19 p^{9} T^{7} + p^{12} T^{8} \)
11$D_4\times C_2$ \( 1 - 24 T - 1285 T^{2} + 19224 T^{3} + 925104 T^{4} + 19224 p^{3} T^{5} - 1285 p^{6} T^{6} - 24 p^{9} T^{7} + p^{12} T^{8} \)
13$D_4\times C_2$ \( 1 + 61 T - 1367 T^{2} + 42334 T^{3} + 12885898 T^{4} + 42334 p^{3} T^{5} - 1367 p^{6} T^{6} + 61 p^{9} T^{7} + p^{12} T^{8} \)
17$D_{4}$ \( ( 1 - 3 T + 9592 T^{2} - 3 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
19$D_{4}$ \( ( 1 - 7 p T + 12234 T^{2} - 7 p^{4} T^{3} + p^{6} T^{4} )^{2} \)
23$D_4\times C_2$ \( 1 + 3 p T - 20527 T^{2} + 2862 p T^{3} + 433519968 T^{4} + 2862 p^{4} T^{5} - 20527 p^{6} T^{6} + 3 p^{10} T^{7} + p^{12} T^{8} \)
29$D_4\times C_2$ \( 1 + 237 T + 4925 T^{2} + 584442 T^{3} + 661218474 T^{4} + 584442 p^{3} T^{5} + 4925 p^{6} T^{6} + 237 p^{9} T^{7} + p^{12} T^{8} \)
31$D_4\times C_2$ \( 1 + 211 T - 24065 T^{2} + 1899844 T^{3} + 2490210604 T^{4} + 1899844 p^{3} T^{5} - 24065 p^{6} T^{6} + 211 p^{9} T^{7} + p^{12} T^{8} \)
37$D_{4}$ \( ( 1 - 262 T + 72162 T^{2} - 262 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
41$D_4\times C_2$ \( 1 + 468 T + 27371 T^{2} + 25183548 T^{3} + 16885415064 T^{4} + 25183548 p^{3} T^{5} + 27371 p^{6} T^{6} + 468 p^{9} T^{7} + p^{12} T^{8} \)
43$D_4\times C_2$ \( 1 - 2 p T - 17387 T^{2} + 268462 p T^{3} - 6295199732 T^{4} + 268462 p^{4} T^{5} - 17387 p^{6} T^{6} - 2 p^{10} T^{7} + p^{12} T^{8} \)
47$D_4\times C_2$ \( 1 + 483 T + 20477 T^{2} + 2495178 T^{3} + 10288968168 T^{4} + 2495178 p^{3} T^{5} + 20477 p^{6} T^{6} + 483 p^{9} T^{7} + p^{12} T^{8} \)
53$D_{4}$ \( ( 1 - 150 T + 257074 T^{2} - 150 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
59$D_4\times C_2$ \( 1 + 168 T - 388645 T^{2} + 1026648 T^{3} + 125802612624 T^{4} + 1026648 p^{3} T^{5} - 388645 p^{6} T^{6} + 168 p^{9} T^{7} + p^{12} T^{8} \)
61$D_4\times C_2$ \( 1 - 1049 T + 424495 T^{2} - 232819256 T^{3} + 155558427094 T^{4} - 232819256 p^{3} T^{5} + 424495 p^{6} T^{6} - 1049 p^{9} T^{7} + p^{12} T^{8} \)
67$D_4\times C_2$ \( 1 - 1166 T + 452161 T^{2} - 356643254 T^{3} + 324003162628 T^{4} - 356643254 p^{3} T^{5} + 452161 p^{6} T^{6} - 1166 p^{9} T^{7} + p^{12} T^{8} \)
71$D_{4}$ \( ( 1 + 312 T + 498238 T^{2} + 312 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
73$D_{4}$ \( ( 1 + 311 T + 698028 T^{2} + 311 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
79$D_4\times C_2$ \( 1 + 349 T - 854801 T^{2} - 3307124 T^{3} + 650611367644 T^{4} - 3307124 p^{3} T^{5} - 854801 p^{6} T^{6} + 349 p^{9} T^{7} + p^{12} T^{8} \)
83$D_4\times C_2$ \( 1 + 1221 T + 78743 T^{2} + 327867804 T^{3} + 814636885368 T^{4} + 327867804 p^{3} T^{5} + 78743 p^{6} T^{6} + 1221 p^{9} T^{7} + p^{12} T^{8} \)
89$D_{4}$ \( ( 1 + 492 T + 1092454 T^{2} + 492 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
97$D_4\times C_2$ \( 1 - 128 T - 1698713 T^{2} + 14111872 T^{3} + 2093632480048 T^{4} + 14111872 p^{3} T^{5} - 1698713 p^{6} T^{6} - 128 p^{9} T^{7} + p^{12} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.89662624150097310414775033587, −13.34376940576790711248211056619, −13.25250709963598213379394897253, −12.72052001372066200764273099936, −12.71408902175183919861051798423, −11.84939578941188341887547656442, −11.83011894895909056258898003511, −11.43944045384362872394399344443, −11.12470557929548630851373349131, −10.11058409929588419318488500924, −9.703925142424272870655477537562, −9.659404539468818438178579664217, −9.547834098055063183043822650011, −8.632252995053353520206374177106, −8.586624919062136920710889624436, −7.49280612897997457221569944911, −7.35951559821777938586083022979, −6.83613776844462763888020529733, −5.85119623212478453380424068911, −5.81611137140904375916041931556, −5.32425418152774817954800103619, −4.67515235124625793810476954388, −3.62768242447689383205795706978, −3.33354277687313836026402320475, −2.49126116116257301076434845504, 2.49126116116257301076434845504, 3.33354277687313836026402320475, 3.62768242447689383205795706978, 4.67515235124625793810476954388, 5.32425418152774817954800103619, 5.81611137140904375916041931556, 5.85119623212478453380424068911, 6.83613776844462763888020529733, 7.35951559821777938586083022979, 7.49280612897997457221569944911, 8.586624919062136920710889624436, 8.632252995053353520206374177106, 9.547834098055063183043822650011, 9.659404539468818438178579664217, 9.703925142424272870655477537562, 10.11058409929588419318488500924, 11.12470557929548630851373349131, 11.43944045384362872394399344443, 11.83011894895909056258898003511, 11.84939578941188341887547656442, 12.71408902175183919861051798423, 12.72052001372066200764273099936, 13.25250709963598213379394897253, 13.34376940576790711248211056619, 13.89662624150097310414775033587

Graph of the $Z$-function along the critical line