L(s) = 1 | + 2·2-s − 2·3-s + 2·4-s − 4·5-s − 4·6-s + 4·7-s + 4·8-s − 8·10-s + 4·11-s − 4·12-s − 2·13-s + 8·14-s + 8·15-s + 3·16-s + 4·17-s − 8·20-s − 8·21-s + 8·22-s − 8·23-s − 8·24-s + 10·25-s − 4·26-s + 6·27-s + 8·28-s − 4·29-s + 16·30-s − 4·31-s + ⋯ |
L(s) = 1 | + 1.41·2-s − 1.15·3-s + 4-s − 1.78·5-s − 1.63·6-s + 1.51·7-s + 1.41·8-s − 2.52·10-s + 1.20·11-s − 1.15·12-s − 0.554·13-s + 2.13·14-s + 2.06·15-s + 3/4·16-s + 0.970·17-s − 1.78·20-s − 1.74·21-s + 1.70·22-s − 1.66·23-s − 1.63·24-s + 2·25-s − 0.784·26-s + 1.15·27-s + 1.51·28-s − 0.742·29-s + 2.92·30-s − 0.718·31-s + ⋯ |
Λ(s)=(=((54⋅198)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((54⋅198)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
54⋅198
|
Sign: |
1
|
Analytic conductor: |
43153.6 |
Root analytic conductor: |
3.79644 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 54⋅198, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
4.421061030 |
L(21) |
≈ |
4.421061030 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 5 | C1 | (1+T)4 |
| 19 | | 1 |
good | 2 | C2≀S4 | 1−pT+pT2−p2T3+9T4−p3T5+p3T6−p4T7+p4T8 |
| 3 | C2≀S4 | 1+2T+4T2+2T3+2T4+2pT5+4p2T6+2p3T7+p4T8 |
| 7 | S4×C2 | 1−4T+12T2−36T3+102T4−36pT5+12p2T6−4p3T7+p4T8 |
| 11 | GL(2,3) | 1−4T+28T2−100T3+422T4−100pT5+28p2T6−4p3T7+p4T8 |
| 13 | C2≀S4 | 1+2T+28T2+46T3+410T4+46pT5+28p2T6+2p3T7+p4T8 |
| 17 | C2≀S4 | 1−4T+36T2−188T3+694T4−188pT5+36p2T6−4p3T7+p4T8 |
| 23 | C2≀S4 | 1+8T+68T2+376T3+2358T4+376pT5+68p2T6+8p3T7+p4T8 |
| 29 | GL(2,3) | 1+4T+84T2+332T3+3238T4+332pT5+84p2T6+4p3T7+p4T8 |
| 31 | C2≀S4 | 1+4T+44T2−140T3+166T4−140pT5+44p2T6+4p3T7+p4T8 |
| 37 | C2≀S4 | 1−6T+124T2−626T3+6442T4−626pT5+124p2T6−6p3T7+p4T8 |
| 41 | C2≀S4 | 1+16T+220T2+1936T3+14438T4+1936pT5+220p2T6+16p3T7+p4T8 |
| 43 | C2≀S4 | 1−4T+156T2−468T3+9750T4−468pT5+156p2T6−4p3T7+p4T8 |
| 47 | C2≀S4 | 1+12T+124T2+1036T3+8294T4+1036pT5+124p2T6+12p3T7+p4T8 |
| 53 | C2≀S4 | 1−10T+4pT2−1406T3+16506T4−1406pT5+4p3T6−10p3T7+p4T8 |
| 59 | C2≀S4 | 1+172T2+224T3+13142T4+224pT5+172p2T6+p4T8 |
| 61 | C2≀S4 | 1−20T+300T2−2972T3+26502T4−2972pT5+300p2T6−20p3T7+p4T8 |
| 67 | C2≀S4 | 1−18T+276T2−3130T3+26930T4−3130pT5+276p2T6−18p3T7+p4T8 |
| 71 | C2≀S4 | 1−20T+316T2−3236T3+30566T4−3236pT5+316p2T6−20p3T7+p4T8 |
| 73 | C2≀S4 | 1−28T+548T2−6916T3+69526T4−6916pT5+548p2T6−28p3T7+p4T8 |
| 79 | C2≀S4 | 1−16T+348T2−3312T3+40646T4−3312pT5+348p2T6−16p3T7+p4T8 |
| 83 | C2≀S4 | 1+260T2−112T3+29862T4−112pT5+260p2T6+p4T8 |
| 89 | C2≀S4 | 1+4T+212T2+1244T3+22134T4+1244pT5+212p2T6+4p3T7+p4T8 |
| 97 | C2≀S4 | 1+30T+612T2+8738T3+98522T4+8738pT5+612p2T6+30p3T7+p4T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.61054074024909909076916988385, −6.55467413009441385029304705225, −5.99335280573231450040210584931, −5.86350402135829098367204157809, −5.65551111786547195104466626618, −5.39115809748685932343941940298, −5.09483183582300447916141946734, −5.07002820458782252301618911480, −5.00474620690255082167397730928, −4.73561164895114785653516741704, −4.45874657319188368051399772900, −4.11937921977363612826867595336, −3.93777180878089654692540093788, −3.89502231656176158638969992703, −3.65530108400113259204446361768, −3.50686542365179419950908498446, −3.21593653361583710890314896059, −2.57734648814662431764233080693, −2.57607082068416537821561297740, −1.97221363531484072848400416088, −1.79377811474673260537343947752, −1.78127667405207560327355660647, −1.04579847525429894475470299308, −0.71535563597378505722975222113, −0.42114664627238455157593270570,
0.42114664627238455157593270570, 0.71535563597378505722975222113, 1.04579847525429894475470299308, 1.78127667405207560327355660647, 1.79377811474673260537343947752, 1.97221363531484072848400416088, 2.57607082068416537821561297740, 2.57734648814662431764233080693, 3.21593653361583710890314896059, 3.50686542365179419950908498446, 3.65530108400113259204446361768, 3.89502231656176158638969992703, 3.93777180878089654692540093788, 4.11937921977363612826867595336, 4.45874657319188368051399772900, 4.73561164895114785653516741704, 5.00474620690255082167397730928, 5.07002820458782252301618911480, 5.09483183582300447916141946734, 5.39115809748685932343941940298, 5.65551111786547195104466626618, 5.86350402135829098367204157809, 5.99335280573231450040210584931, 6.55467413009441385029304705225, 6.61054074024909909076916988385