Properties

Label 8-17e4-1.1-c1e4-0-0
Degree $8$
Conductor $83521$
Sign $1$
Analytic cond. $0.000339550$
Root an. cond. $0.368436$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s − 4·3-s + 8·4-s + 16·6-s − 4·7-s − 12·8-s + 12·9-s − 4·11-s − 32·12-s + 16·14-s + 15·16-s − 48·18-s + 8·19-s + 16·21-s + 16·22-s + 4·23-s + 48·24-s − 2·25-s − 20·27-s − 32·28-s − 4·29-s − 12·31-s − 16·32-s + 16·33-s + 96·36-s − 32·38-s − 4·41-s + ⋯
L(s)  = 1  − 2.82·2-s − 2.30·3-s + 4·4-s + 6.53·6-s − 1.51·7-s − 4.24·8-s + 4·9-s − 1.20·11-s − 9.23·12-s + 4.27·14-s + 15/4·16-s − 11.3·18-s + 1.83·19-s + 3.49·21-s + 3.41·22-s + 0.834·23-s + 9.79·24-s − 2/5·25-s − 3.84·27-s − 6.04·28-s − 0.742·29-s − 2.15·31-s − 2.82·32-s + 2.78·33-s + 16·36-s − 5.19·38-s − 0.624·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 83521 ^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 83521 ^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(83521\)    =    \(17^{4}\)
Sign: $1$
Analytic conductor: \(0.000339550\)
Root analytic conductor: \(0.368436\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 83521,\ (\ :1/2, 1/2, 1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.02073318126\)
\(L(\frac12)\) \(\approx\) \(0.02073318126\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad17$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
good2$D_4\times C_2$ \( 1 + p^{2} T + p^{3} T^{2} + 3 p^{2} T^{3} + 17 T^{4} + 3 p^{3} T^{5} + p^{5} T^{6} + p^{5} T^{7} + p^{4} T^{8} \)
3$D_4\times C_2$ \( 1 + 4 T + 4 T^{2} - 4 p T^{3} - 40 T^{4} - 4 p^{2} T^{5} + 4 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} \)
5$D_4\times C_2$ \( 1 + 2 T^{2} - 16 T^{3} + 2 T^{4} - 16 p T^{5} + 2 p^{2} T^{6} + p^{4} T^{8} \)
7$D_4\times C_2$ \( 1 + 4 T + 4 T^{2} - 4 p T^{3} - 104 T^{4} - 4 p^{2} T^{5} + 4 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} \)
11$D_4\times C_2$ \( 1 + 4 T + 12 T^{2} + 60 T^{3} + 184 T^{4} + 60 p T^{5} + 12 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} \)
13$C_2^2$ \( ( 1 - 24 T^{2} + p^{2} T^{4} )^{2} \)
19$D_4\times C_2$ \( 1 - 8 T + 32 T^{2} - 184 T^{3} + 1042 T^{4} - 184 p T^{5} + 32 p^{2} T^{6} - 8 p^{3} T^{7} + p^{4} T^{8} \)
23$D_4\times C_2$ \( 1 - 4 T + 12 T^{2} + 164 T^{3} - 712 T^{4} + 164 p T^{5} + 12 p^{2} T^{6} - 4 p^{3} T^{7} + p^{4} T^{8} \)
29$D_4\times C_2$ \( 1 + 4 T + 22 T^{2} + 244 T^{3} + 930 T^{4} + 244 p T^{5} + 22 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} \)
31$D_4\times C_2$ \( 1 + 12 T + 108 T^{2} + 804 T^{3} + 5112 T^{4} + 804 p T^{5} + 108 p^{2} T^{6} + 12 p^{3} T^{7} + p^{4} T^{8} \)
37$D_4\times C_2$ \( 1 + 50 T^{2} - 240 T^{3} + 1250 T^{4} - 240 p T^{5} + 50 p^{2} T^{6} + p^{4} T^{8} \)
41$C_2$$\times$$C_2^2$ \( ( 1 - 6 T + p T^{2} )^{2}( 1 + 16 T + 128 T^{2} + 16 p T^{3} + p^{2} T^{4} ) \)
43$D_4\times C_2$ \( 1 + 8 T + 32 T^{2} + 376 T^{3} + 4402 T^{4} + 376 p T^{5} + 32 p^{2} T^{6} + 8 p^{3} T^{7} + p^{4} T^{8} \)
47$D_4\times C_2$ \( 1 - 44 T^{2} + 2854 T^{4} - 44 p^{2} T^{6} + p^{4} T^{8} \)
53$C_2^2$ \( ( 1 + 2 T + 2 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
59$C_2^2$$\times$$C_2^2$ \( ( 1 - 20 T + 200 T^{2} - 20 p T^{3} + p^{2} T^{4} )( 1 + 20 T + 200 T^{2} + 20 p T^{3} + p^{2} T^{4} ) \)
61$D_4\times C_2$ \( 1 + 50 T^{2} - 720 T^{3} + 1250 T^{4} - 720 p T^{5} + 50 p^{2} T^{6} + p^{4} T^{8} \)
67$D_{4}$ \( ( 1 - 8 T + 142 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{2} \)
71$D_4\times C_2$ \( 1 - 20 T + 100 T^{2} + 20 p T^{3} - 23400 T^{4} + 20 p^{2} T^{5} + 100 p^{2} T^{6} - 20 p^{3} T^{7} + p^{4} T^{8} \)
73$D_4\times C_2$ \( 1 + 28 T + 294 T^{2} + 1372 T^{3} + 4802 T^{4} + 1372 p T^{5} + 294 p^{2} T^{6} + 28 p^{3} T^{7} + p^{4} T^{8} \)
79$D_4\times C_2$ \( 1 + 4 T + 12 T^{2} - 836 T^{3} - 3400 T^{4} - 836 p T^{5} + 12 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} \)
83$D_4\times C_2$ \( 1 - 16 T + 128 T^{2} - 1264 T^{3} + 12466 T^{4} - 1264 p T^{5} + 128 p^{2} T^{6} - 16 p^{3} T^{7} + p^{4} T^{8} \)
89$D_4\times C_2$ \( 1 - 224 T^{2} + 27874 T^{4} - 224 p^{2} T^{6} + p^{4} T^{8} \)
97$D_4\times C_2$ \( 1 - 24 T + 242 T^{2} - 1704 T^{3} + 13730 T^{4} - 1704 p T^{5} + 242 p^{2} T^{6} - 24 p^{3} T^{7} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.27820992234551772161971224693, −14.29692826949536558292876311602, −13.87946730539711479922404677570, −13.08640749870537083344509537076, −13.01438382222935165276952421923, −12.64612980251574111590139919250, −12.41733962896031951736224781186, −11.69015461759250798597364696764, −11.57899485898614895591759569503, −11.10378052582036485546872080009, −10.74244975396732498786477290357, −10.31660880773855664947822962414, −10.06336598180932952144978764529, −9.734396513385092223719084388957, −9.538072377630503931469175384201, −8.833155096843014552661580438105, −8.787455779585150857889124623441, −7.59353250379502107111273587820, −7.58544203495244752743489520942, −7.04494793081621256455477703736, −6.59514495921055644029448722027, −6.14743572620168908564155996007, −5.27609823497030340629124026891, −5.15470058723758459368169597079, −3.48616011786062289576592162458, 3.48616011786062289576592162458, 5.15470058723758459368169597079, 5.27609823497030340629124026891, 6.14743572620168908564155996007, 6.59514495921055644029448722027, 7.04494793081621256455477703736, 7.58544203495244752743489520942, 7.59353250379502107111273587820, 8.787455779585150857889124623441, 8.833155096843014552661580438105, 9.538072377630503931469175384201, 9.734396513385092223719084388957, 10.06336598180932952144978764529, 10.31660880773855664947822962414, 10.74244975396732498786477290357, 11.10378052582036485546872080009, 11.57899485898614895591759569503, 11.69015461759250798597364696764, 12.41733962896031951736224781186, 12.64612980251574111590139919250, 13.01438382222935165276952421923, 13.08640749870537083344509537076, 13.87946730539711479922404677570, 14.29692826949536558292876311602, 15.27820992234551772161971224693

Graph of the $Z$-function along the critical line