Properties

Label 8-1792e4-1.1-c2e4-0-1
Degree $8$
Conductor $1.031\times 10^{13}$
Sign $1$
Analytic cond. $5.68449\times 10^{6}$
Root an. cond. $6.98773$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·3-s + 4·9-s − 16·11-s − 56·17-s + 40·19-s + 36·25-s + 200·27-s + 128·33-s + 120·41-s + 48·43-s − 14·49-s + 448·51-s − 320·57-s − 72·59-s − 96·67-s + 152·73-s − 288·75-s − 790·81-s − 248·83-s − 136·89-s − 600·97-s − 64·99-s − 352·107-s + 56·113-s − 100·121-s − 960·123-s + 127-s + ⋯
L(s)  = 1  − 8/3·3-s + 4/9·9-s − 1.45·11-s − 3.29·17-s + 2.10·19-s + 1.43·25-s + 7.40·27-s + 3.87·33-s + 2.92·41-s + 1.11·43-s − 2/7·49-s + 8.78·51-s − 5.61·57-s − 1.22·59-s − 1.43·67-s + 2.08·73-s − 3.83·75-s − 9.75·81-s − 2.98·83-s − 1.52·89-s − 6.18·97-s − 0.646·99-s − 3.28·107-s + 0.495·113-s − 0.826·121-s − 7.80·123-s + 0.00787·127-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{32} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{32} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{32} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(5.68449\times 10^{6}\)
Root analytic conductor: \(6.98773\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{32} \cdot 7^{4} ,\ ( \ : 1, 1, 1, 1 ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.2349406042\)
\(L(\frac12)\) \(\approx\) \(0.2349406042\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
7$C_2$ \( ( 1 + p T^{2} )^{2} \)
good3$C_2$ \( ( 1 + 2 T + p^{2} T^{2} )^{4} \)
5$D_4\times C_2$ \( 1 - 36 T^{2} + 1126 T^{4} - 36 p^{4} T^{6} + p^{8} T^{8} \)
11$D_{4}$ \( ( 1 + 8 T + 146 T^{2} + 8 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
13$D_4\times C_2$ \( 1 - 164 T^{2} + 59814 T^{4} - 164 p^{4} T^{6} + p^{8} T^{8} \)
17$D_{4}$ \( ( 1 + 28 T + 662 T^{2} + 28 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
19$D_{4}$ \( ( 1 - 20 T + 374 T^{2} - 20 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
23$D_4\times C_2$ \( 1 - 1604 T^{2} + 1138374 T^{4} - 1604 p^{4} T^{6} + p^{8} T^{8} \)
29$D_4\times C_2$ \( 1 - 1148 T^{2} + 1340838 T^{4} - 1148 p^{4} T^{6} + p^{8} T^{8} \)
31$C_2^2$ \( ( 1 - 1906 T^{2} + p^{4} T^{4} )^{2} \)
37$D_4\times C_2$ \( 1 - 2940 T^{2} + 5391334 T^{4} - 2940 p^{4} T^{6} + p^{8} T^{8} \)
41$D_{4}$ \( ( 1 - 60 T + 4150 T^{2} - 60 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
43$D_{4}$ \( ( 1 - 24 T + 1042 T^{2} - 24 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
47$D_4\times C_2$ \( 1 - 5348 T^{2} + 14587206 T^{4} - 5348 p^{4} T^{6} + p^{8} T^{8} \)
53$C_2^2$$\times$$C_2^2$ \( ( 1 - 40 T + 10 p T^{2} - 40 p^{2} T^{3} + p^{4} T^{4} )( 1 + 40 T + 10 p T^{2} + 40 p^{2} T^{3} + p^{4} T^{4} ) \)
59$D_{4}$ \( ( 1 + 36 T + 5494 T^{2} + 36 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
61$D_4\times C_2$ \( 1 - 14372 T^{2} + 79326246 T^{4} - 14372 p^{4} T^{6} + p^{8} T^{8} \)
67$D_{4}$ \( ( 1 + 48 T + 6754 T^{2} + 48 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
71$D_4\times C_2$ \( 1 - 8388 T^{2} + 39052870 T^{4} - 8388 p^{4} T^{6} + p^{8} T^{8} \)
73$D_{4}$ \( ( 1 - 76 T + 4934 T^{2} - 76 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
79$C_2^2$ \( ( 1 - 1282 T^{2} + p^{4} T^{4} )^{2} \)
83$D_{4}$ \( ( 1 + 124 T + 13590 T^{2} + 124 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
89$D_{4}$ \( ( 1 + 68 T + 15206 T^{2} + 68 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
97$D_{4}$ \( ( 1 + 300 T + 41206 T^{2} + 300 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.42988819351148331803952381540, −6.24150135156330618320986921558, −5.80076762655698813949561142677, −5.52758336073885517331226457377, −5.51103623253157342463379289688, −5.48641276197376313645578530726, −5.47786017711144637461090227884, −5.02204698586488490505416687774, −4.78484205559981225436075137526, −4.51364040493759642281148607530, −4.37910050143639970520278864036, −4.22339352199955153377541884669, −3.96940406289386693608477611022, −3.44766762437138045057661993602, −2.90163188304610637926107566354, −2.89058407351091158621048909971, −2.65426650314275188619336222612, −2.63704523955576335294865536738, −2.59821704406584456937715114089, −1.74359921270576799566684800566, −1.47058175943931424040885457711, −1.07345681975946491705963969418, −0.59098298775835572997573372868, −0.46647094489569426834829471112, −0.17393457908813333250237073901, 0.17393457908813333250237073901, 0.46647094489569426834829471112, 0.59098298775835572997573372868, 1.07345681975946491705963969418, 1.47058175943931424040885457711, 1.74359921270576799566684800566, 2.59821704406584456937715114089, 2.63704523955576335294865536738, 2.65426650314275188619336222612, 2.89058407351091158621048909971, 2.90163188304610637926107566354, 3.44766762437138045057661993602, 3.96940406289386693608477611022, 4.22339352199955153377541884669, 4.37910050143639970520278864036, 4.51364040493759642281148607530, 4.78484205559981225436075137526, 5.02204698586488490505416687774, 5.47786017711144637461090227884, 5.48641276197376313645578530726, 5.51103623253157342463379289688, 5.52758336073885517331226457377, 5.80076762655698813949561142677, 6.24150135156330618320986921558, 6.42988819351148331803952381540

Graph of the $Z$-function along the critical line