Properties

Label 8-1792e4-1.1-c1e4-0-15
Degree $8$
Conductor $1.031\times 10^{13}$
Sign $1$
Analytic cond. $41923.7$
Root an. cond. $3.78274$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·7-s − 2·9-s + 8·17-s − 4·23-s − 6·25-s − 8·31-s + 16·41-s + 10·49-s − 8·63-s + 32·71-s + 24·73-s + 2·81-s + 32·89-s + 16·97-s + 24·103-s + 36·113-s + 32·119-s − 24·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 16·153-s + 157-s − 16·161-s + ⋯
L(s)  = 1  + 1.51·7-s − 2/3·9-s + 1.94·17-s − 0.834·23-s − 6/5·25-s − 1.43·31-s + 2.49·41-s + 10/7·49-s − 1.00·63-s + 3.79·71-s + 2.80·73-s + 2/9·81-s + 3.39·89-s + 1.62·97-s + 2.36·103-s + 3.38·113-s + 2.93·119-s − 2.18·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s − 1.29·153-s + 0.0798·157-s − 1.26·161-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{32} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{32} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{32} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(41923.7\)
Root analytic conductor: \(3.78274\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{32} \cdot 7^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(5.912872294\)
\(L(\frac12)\) \(\approx\) \(5.912872294\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
7$C_1$ \( ( 1 - T )^{4} \)
good3$D_4\times C_2$ \( 1 + 2 T^{2} + 2 T^{4} + 2 p^{2} T^{6} + p^{4} T^{8} \)
5$C_2^2 \wr C_2$ \( 1 + 6 T^{2} + 42 T^{4} + 6 p^{2} T^{6} + p^{4} T^{8} \)
11$C_2^2:C_4$ \( 1 + 24 T^{2} + 318 T^{4} + 24 p^{2} T^{6} + p^{4} T^{8} \)
13$C_2^2 \wr C_2$ \( 1 + 38 T^{2} + 682 T^{4} + 38 p^{2} T^{6} + p^{4} T^{8} \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )^{4} \)
19$C_2^2 \wr C_2$ \( 1 + 66 T^{2} + 1794 T^{4} + 66 p^{2} T^{6} + p^{4} T^{8} \)
23$D_{4}$ \( ( 1 + 2 T + 30 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
29$C_2^2 \wr C_2$ \( 1 + 76 T^{2} + 2854 T^{4} + 76 p^{2} T^{6} + p^{4} T^{8} \)
31$D_{4}$ \( ( 1 + 4 T - 2 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
37$C_2^2 \wr C_2$ \( 1 + 108 T^{2} + 5382 T^{4} + 108 p^{2} T^{6} + p^{4} T^{8} \)
41$D_{4}$ \( ( 1 - 8 T + 30 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{2} \)
43$C_2^2 \wr C_2$ \( 1 + 152 T^{2} + 9406 T^{4} + 152 p^{2} T^{6} + p^{4} T^{8} \)
47$C_2$ \( ( 1 + p T^{2} )^{4} \)
53$C_2^2 \wr C_2$ \( 1 + 132 T^{2} + 8886 T^{4} + 132 p^{2} T^{6} + p^{4} T^{8} \)
59$C_2^2 \wr C_2$ \( 1 + 178 T^{2} + 14050 T^{4} + 178 p^{2} T^{6} + p^{4} T^{8} \)
61$C_2^2 \wr C_2$ \( 1 + 230 T^{2} + 20650 T^{4} + 230 p^{2} T^{6} + p^{4} T^{8} \)
67$C_2^2 \wr C_2$ \( 1 - 112 T^{2} + 8782 T^{4} - 112 p^{2} T^{6} + p^{4} T^{8} \)
71$C_2$ \( ( 1 - 8 T + p T^{2} )^{4} \)
73$C_2$ \( ( 1 - 6 T + p T^{2} )^{4} \)
79$C_2$ \( ( 1 + p T^{2} )^{4} \)
83$C_2^2 \wr C_2$ \( 1 + 210 T^{2} + 23970 T^{4} + 210 p^{2} T^{6} + p^{4} T^{8} \)
89$D_{4}$ \( ( 1 - 16 T + 174 T^{2} - 16 p T^{3} + p^{2} T^{4} )^{2} \)
97$D_{4}$ \( ( 1 - 8 T + 142 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.58762574954538226292727188939, −6.14801460805488571662274418373, −6.07806740249784940116968354743, −5.99583877030064121998982458951, −5.93896759712490311872045842441, −5.40962636356547148044290285215, −5.22811483155944353768458301191, −5.20156333904630845714755225082, −5.01155102445970823984750008837, −4.65894318348720601120656671715, −4.53888768328166144068059511762, −4.13931693507848809426484022139, −3.87719977522342135836036584618, −3.68422365984952772772831428934, −3.44851915514365978278468556975, −3.42777478293824263838405136884, −3.07573611236688404209844162154, −2.46730107205941771081489948298, −2.28340221704207430623361418785, −2.13586314404084476079001678233, −1.99062849331431991659766749569, −1.60024953263741066708007673725, −0.990837736067871507166422003521, −0.833098801920312158407662725750, −0.52399927878331299383355506105, 0.52399927878331299383355506105, 0.833098801920312158407662725750, 0.990837736067871507166422003521, 1.60024953263741066708007673725, 1.99062849331431991659766749569, 2.13586314404084476079001678233, 2.28340221704207430623361418785, 2.46730107205941771081489948298, 3.07573611236688404209844162154, 3.42777478293824263838405136884, 3.44851915514365978278468556975, 3.68422365984952772772831428934, 3.87719977522342135836036584618, 4.13931693507848809426484022139, 4.53888768328166144068059511762, 4.65894318348720601120656671715, 5.01155102445970823984750008837, 5.20156333904630845714755225082, 5.22811483155944353768458301191, 5.40962636356547148044290285215, 5.93896759712490311872045842441, 5.99583877030064121998982458951, 6.07806740249784940116968354743, 6.14801460805488571662274418373, 6.58762574954538226292727188939

Graph of the $Z$-function along the critical line