Properties

Label 8-1792e4-1.1-c1e4-0-14
Degree $8$
Conductor $1.031\times 10^{13}$
Sign $1$
Analytic cond. $41923.7$
Root an. cond. $3.78274$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·25-s − 16·29-s + 32·37-s + 10·49-s − 16·53-s − 18·81-s − 16·109-s + 16·113-s + 36·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 40·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + ⋯
L(s)  = 1  + 8/5·25-s − 2.97·29-s + 5.26·37-s + 10/7·49-s − 2.19·53-s − 2·81-s − 1.53·109-s + 1.50·113-s + 3.27·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 3.07·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{32} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{32} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{32} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(41923.7\)
Root analytic conductor: \(3.78274\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{32} \cdot 7^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(4.085290123\)
\(L(\frac12)\) \(\approx\) \(4.085290123\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
7$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
good3$C_2^2$ \( ( 1 + p^{2} T^{4} )^{2} \)
5$C_2^2$ \( ( 1 - 4 T^{2} + p^{2} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 - 18 T^{2} + p^{2} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 - 20 T^{2} + p^{2} T^{4} )^{2} \)
17$C_2^2$ \( ( 1 - 10 T^{2} + p^{2} T^{4} )^{2} \)
19$C_2^2$ \( ( 1 + 32 T^{2} + p^{2} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 - 30 T^{2} + p^{2} T^{4} )^{2} \)
29$C_2$ \( ( 1 + 4 T + p T^{2} )^{4} \)
31$C_2^2$ \( ( 1 + 38 T^{2} + p^{2} T^{4} )^{2} \)
37$C_2$ \( ( 1 - 8 T + p T^{2} )^{4} \)
41$C_2$ \( ( 1 - p T^{2} )^{4} \)
43$C_2^2$ \( ( 1 - 50 T^{2} + p^{2} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 + 70 T^{2} + p^{2} T^{4} )^{2} \)
53$C_2$ \( ( 1 + 4 T + p T^{2} )^{4} \)
59$C_2^2$ \( ( 1 + 112 T^{2} + p^{2} T^{4} )^{2} \)
61$C_2^2$ \( ( 1 - 68 T^{2} + p^{2} T^{4} )^{2} \)
67$C_2^2$ \( ( 1 - 130 T^{2} + p^{2} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 - 42 T^{2} + p^{2} T^{4} )^{2} \)
73$C_2^2$ \( ( 1 + 70 T^{2} + p^{2} T^{4} )^{2} \)
79$C_2^2$ \( ( 1 - 122 T^{2} + p^{2} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 + 160 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 + 38 T^{2} + p^{2} T^{4} )^{2} \)
97$C_2^2$ \( ( 1 - 170 T^{2} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.40210288891121374094115447771, −6.39788445136666670968901928417, −6.34547423041145641720240943351, −5.78989346589378861338483813858, −5.74267004421504577546789064953, −5.60382945416293231481266440011, −5.56971550302598407697313435535, −5.04719209773789012569326657966, −4.71845585657178657792789896784, −4.64858000794016487762808959184, −4.55769801260544551816222279919, −4.09063132902285450246625602595, −3.95400724380388238606145418735, −3.92062113846217172205235218714, −3.45552803307971704041824596375, −3.03505320270900341416437107200, −2.99638149671264133739516900319, −2.76704869845878984151756616192, −2.47105765567653582470014323750, −2.11316167480912181295180609495, −1.89212013337407305093571910356, −1.41148959404589955066579271609, −1.25527895374484221700690580869, −0.59858846927798077393910490557, −0.52350997919781881894483584735, 0.52350997919781881894483584735, 0.59858846927798077393910490557, 1.25527895374484221700690580869, 1.41148959404589955066579271609, 1.89212013337407305093571910356, 2.11316167480912181295180609495, 2.47105765567653582470014323750, 2.76704869845878984151756616192, 2.99638149671264133739516900319, 3.03505320270900341416437107200, 3.45552803307971704041824596375, 3.92062113846217172205235218714, 3.95400724380388238606145418735, 4.09063132902285450246625602595, 4.55769801260544551816222279919, 4.64858000794016487762808959184, 4.71845585657178657792789896784, 5.04719209773789012569326657966, 5.56971550302598407697313435535, 5.60382945416293231481266440011, 5.74267004421504577546789064953, 5.78989346589378861338483813858, 6.34547423041145641720240943351, 6.39788445136666670968901928417, 6.40210288891121374094115447771

Graph of the $Z$-function along the critical line