Properties

Label 8-165e4-1.1-c2e4-0-2
Degree $8$
Conductor $741200625$
Sign $1$
Analytic cond. $408.578$
Root an. cond. $2.12035$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 12·3-s − 16·5-s + 90·9-s + 192·15-s + 23·16-s − 28·23-s + 142·25-s − 540·27-s + 80·31-s + 28·37-s − 1.44e3·45-s − 172·47-s − 276·48-s + 68·53-s + 88·59-s − 188·67-s + 336·69-s − 1.70e3·75-s − 368·80-s + 2.83e3·81-s + 400·89-s − 960·93-s + 172·97-s + 28·103-s − 336·111-s + 212·113-s + 448·115-s + ⋯
L(s)  = 1  − 4·3-s − 3.19·5-s + 10·9-s + 64/5·15-s + 1.43·16-s − 1.21·23-s + 5.67·25-s − 20·27-s + 2.58·31-s + 0.756·37-s − 32·45-s − 3.65·47-s − 5.75·48-s + 1.28·53-s + 1.49·59-s − 2.80·67-s + 4.86·69-s − 22.7·75-s − 4.59·80-s + 35·81-s + 4.49·89-s − 10.3·93-s + 1.77·97-s + 0.271·103-s − 3.02·111-s + 1.87·113-s + 3.89·115-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 5^{4} \cdot 11^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 5^{4} \cdot 11^{4}\right)^{s/2} \, \Gamma_{\C}(s+1)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(3^{4} \cdot 5^{4} \cdot 11^{4}\)
Sign: $1$
Analytic conductor: \(408.578\)
Root analytic conductor: \(2.12035\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 3^{4} \cdot 5^{4} \cdot 11^{4} ,\ ( \ : 1, 1, 1, 1 ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.1380137496\)
\(L(\frac12)\) \(\approx\) \(0.1380137496\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$ \( ( 1 + p T )^{4} \)
5$C_2$ \( ( 1 + 8 T + p^{2} T^{2} )^{2} \)
11$C_2^2$ \( 1 + 82 T^{2} + p^{4} T^{4} \)
good2$C_2^3$ \( 1 - 23 T^{4} + p^{8} T^{8} \)
7$C_2^3$ \( 1 + 1282 T^{4} + p^{8} T^{8} \)
13$C_2^3$ \( 1 + 44002 T^{4} + p^{8} T^{8} \)
17$C_2^3$ \( 1 - 5438 T^{4} + p^{8} T^{8} \)
19$C_2^2$ \( ( 1 + 562 T^{2} + p^{4} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 + 14 T + 98 T^{2} + 14 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 - 1322 T^{2} + p^{4} T^{4} )^{2} \)
31$C_2$ \( ( 1 - 20 T + p^{2} T^{2} )^{4} \)
37$C_2^2$ \( ( 1 - 14 T + 98 T^{2} - 14 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
41$C_2^2$ \( ( 1 - 1478 T^{2} + p^{4} T^{4} )^{2} \)
43$C_2^3$ \( 1 + 549922 T^{4} + p^{8} T^{8} \)
47$C_2^2$ \( ( 1 + 86 T + 3698 T^{2} + 86 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
53$C_2$ \( ( 1 - 90 T + p^{2} T^{2} )^{2}( 1 + 56 T + p^{2} T^{2} )^{2} \)
59$C_2$ \( ( 1 - 22 T + p^{2} T^{2} )^{4} \)
61$C_2^2$ \( ( 1 + 1558 T^{2} + p^{4} T^{4} )^{2} \)
67$C_2^2$ \( ( 1 + 94 T + 4418 T^{2} + 94 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 + 4318 T^{2} + p^{4} T^{4} )^{2} \)
73$C_2^3$ \( 1 + 36867202 T^{4} + p^{8} T^{8} \)
79$C_2^2$ \( ( 1 + 12442 T^{2} + p^{4} T^{4} )^{2} \)
83$C_2^3$ \( 1 - 51909278 T^{4} + p^{8} T^{8} \)
89$C_2$ \( ( 1 - 100 T + p^{2} T^{2} )^{4} \)
97$C_2^2$ \( ( 1 - 86 T + 3698 T^{2} - 86 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.401910680671323001493922887779, −8.708233379118196564152691709577, −8.534092574162266787610122856903, −7.969917895895861624085367761883, −7.914751280008055650758189281050, −7.79277819187836171757978636298, −7.28698936576666739582535603796, −7.27764614460008755274870726654, −6.88018361450821282193794470153, −6.55476089761840595762889188947, −6.10669928088490121067431041171, −6.04724562712841034646163230614, −6.00951771345949351299846562162, −5.16166650956687640814784666138, −5.03858702575652500148514561047, −4.66987124642198007116386307474, −4.62024092154609501269514156275, −4.20711322060649126654161278680, −3.90314218138986698128611897924, −3.44479765125009173358696113453, −3.33633731689427410580707020239, −2.02618575779198540181228204384, −1.13804576693341082361230013129, −0.815873772553838929220468044392, −0.28958016450451157587762534494, 0.28958016450451157587762534494, 0.815873772553838929220468044392, 1.13804576693341082361230013129, 2.02618575779198540181228204384, 3.33633731689427410580707020239, 3.44479765125009173358696113453, 3.90314218138986698128611897924, 4.20711322060649126654161278680, 4.62024092154609501269514156275, 4.66987124642198007116386307474, 5.03858702575652500148514561047, 5.16166650956687640814784666138, 6.00951771345949351299846562162, 6.04724562712841034646163230614, 6.10669928088490121067431041171, 6.55476089761840595762889188947, 6.88018361450821282193794470153, 7.27764614460008755274870726654, 7.28698936576666739582535603796, 7.79277819187836171757978636298, 7.914751280008055650758189281050, 7.969917895895861624085367761883, 8.534092574162266787610122856903, 8.708233379118196564152691709577, 9.401910680671323001493922887779

Graph of the $Z$-function along the critical line