Properties

Label 8-15e8-1.1-c4e4-0-8
Degree $8$
Conductor $2562890625$
Sign $1$
Analytic cond. $292622.$
Root an. cond. $4.82267$
Motivic weight $4$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 12·2-s + 72·4-s − 72·7-s − 264·8-s + 24·11-s + 144·13-s + 864·14-s + 220·16-s − 600·17-s − 288·22-s − 888·23-s − 1.72e3·26-s − 5.18e3·28-s + 3.24e3·31-s + 4.32e3·32-s + 7.20e3·34-s + 2.44e3·37-s − 6.86e3·41-s − 5.54e3·43-s + 1.72e3·44-s + 1.06e4·46-s − 5.61e3·47-s + 2.59e3·49-s + 1.03e4·52-s − 1.84e3·53-s + 1.90e4·56-s + 1.50e4·61-s + ⋯
L(s)  = 1  − 3·2-s + 9/2·4-s − 1.46·7-s − 4.12·8-s + 0.198·11-s + 0.852·13-s + 4.40·14-s + 0.859·16-s − 2.07·17-s − 0.595·22-s − 1.67·23-s − 2.55·26-s − 6.61·28-s + 3.37·31-s + 4.21·32-s + 6.22·34-s + 1.78·37-s − 4.08·41-s − 2.99·43-s + 0.892·44-s + 5.03·46-s − 2.54·47-s + 1.07·49-s + 3.83·52-s − 0.657·53-s + 6.06·56-s + 4.03·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{8} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(5-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{8} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s+2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(3^{8} \cdot 5^{8}\)
Sign: $1$
Analytic conductor: \(292622.\)
Root analytic conductor: \(4.82267\)
Motivic weight: \(4\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 3^{8} \cdot 5^{8} ,\ ( \ : 2, 2, 2, 2 ),\ 1 )\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(0.4565376782\)
\(L(\frac12)\) \(\approx\) \(0.4565376782\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
good2$D_4\times C_2$ \( 1 + 3 p^{2} T + 9 p^{3} T^{2} + 33 p^{3} T^{3} + 233 p^{2} T^{4} + 33 p^{7} T^{5} + 9 p^{11} T^{6} + 3 p^{14} T^{7} + p^{16} T^{8} \)
7$D_4\times C_2$ \( 1 + 72 T + 2592 T^{2} + 219312 T^{3} + 18140207 T^{4} + 219312 p^{4} T^{5} + 2592 p^{8} T^{6} + 72 p^{12} T^{7} + p^{16} T^{8} \)
11$D_{4}$ \( ( 1 - 12 T - 7186 T^{2} - 12 p^{4} T^{3} + p^{8} T^{4} )^{2} \)
13$D_4\times C_2$ \( 1 - 144 T + 10368 T^{2} - 2429280 T^{3} + 432514319 T^{4} - 2429280 p^{4} T^{5} + 10368 p^{8} T^{6} - 144 p^{12} T^{7} + p^{16} T^{8} \)
17$D_4\times C_2$ \( 1 + 600 T + 180000 T^{2} + 77105400 T^{3} + 31005206018 T^{4} + 77105400 p^{4} T^{5} + 180000 p^{8} T^{6} + 600 p^{12} T^{7} + p^{16} T^{8} \)
19$D_4\times C_2$ \( 1 - 326690 T^{2} + 54622417923 T^{4} - 326690 p^{8} T^{6} + p^{16} T^{8} \)
23$D_4\times C_2$ \( 1 + 888 T + 394272 T^{2} + 52907928 T^{3} - 41414676478 T^{4} + 52907928 p^{4} T^{5} + 394272 p^{8} T^{6} + 888 p^{12} T^{7} + p^{16} T^{8} \)
29$D_4\times C_2$ \( 1 - 63932 p T^{2} + 1839990957414 T^{4} - 63932 p^{9} T^{6} + p^{16} T^{8} \)
31$D_{4}$ \( ( 1 - 1622 T + 2141667 T^{2} - 1622 p^{4} T^{3} + p^{8} T^{4} )^{2} \)
37$D_4\times C_2$ \( 1 - 2448 T + 2996352 T^{2} - 6308792208 T^{3} + 12788952535682 T^{4} - 6308792208 p^{4} T^{5} + 2996352 p^{8} T^{6} - 2448 p^{12} T^{7} + p^{16} T^{8} \)
41$D_{4}$ \( ( 1 + 3432 T + 8077562 T^{2} + 3432 p^{4} T^{3} + p^{8} T^{4} )^{2} \)
43$D_4\times C_2$ \( 1 + 5544 T + 15367968 T^{2} + 34365692592 T^{3} + 69120271160159 T^{4} + 34365692592 p^{4} T^{5} + 15367968 p^{8} T^{6} + 5544 p^{12} T^{7} + p^{16} T^{8} \)
47$D_4\times C_2$ \( 1 + 5616 T + 15769728 T^{2} + 24055647408 T^{3} + 36339718329314 T^{4} + 24055647408 p^{4} T^{5} + 15769728 p^{8} T^{6} + 5616 p^{12} T^{7} + p^{16} T^{8} \)
53$D_4\times C_2$ \( 1 + 1848 T + 1707552 T^{2} + 12837022968 T^{3} + 95614873611362 T^{4} + 12837022968 p^{4} T^{5} + 1707552 p^{8} T^{6} + 1848 p^{12} T^{7} + p^{16} T^{8} \)
59$D_4\times C_2$ \( 1 - 10941820 T^{2} + 100216939084998 T^{4} - 10941820 p^{8} T^{6} + p^{16} T^{8} \)
61$D_{4}$ \( ( 1 - 7510 T + 35401563 T^{2} - 7510 p^{4} T^{3} + p^{8} T^{4} )^{2} \)
67$D_4\times C_2$ \( 1 + 13320 T + 88711200 T^{2} + 439054559280 T^{3} + 2008874003467343 T^{4} + 439054559280 p^{4} T^{5} + 88711200 p^{8} T^{6} + 13320 p^{12} T^{7} + p^{16} T^{8} \)
71$D_{4}$ \( ( 1 - 10776 T + 74664506 T^{2} - 10776 p^{4} T^{3} + p^{8} T^{4} )^{2} \)
73$D_4\times C_2$ \( 1 - 19728 T + 194596992 T^{2} - 1434198789648 T^{3} + 8607659366333762 T^{4} - 1434198789648 p^{4} T^{5} + 194596992 p^{8} T^{6} - 19728 p^{12} T^{7} + p^{16} T^{8} \)
79$D_4\times C_2$ \( 1 - 25715324 T^{2} + 2139409705359366 T^{4} - 25715324 p^{8} T^{6} + p^{16} T^{8} \)
83$D_4\times C_2$ \( 1 + 8592 T + 36911232 T^{2} + 464368361424 T^{3} + 5798663913908642 T^{4} + 464368361424 p^{4} T^{5} + 36911232 p^{8} T^{6} + 8592 p^{12} T^{7} + p^{16} T^{8} \)
89$D_4\times C_2$ \( 1 - 203730340 T^{2} + 18051837318885318 T^{4} - 203730340 p^{8} T^{6} + p^{16} T^{8} \)
97$D_4\times C_2$ \( 1 + 11520 T + 66355200 T^{2} + 1104271879680 T^{3} + 18323409093272303 T^{4} + 1104271879680 p^{4} T^{5} + 66355200 p^{8} T^{6} + 11520 p^{12} T^{7} + p^{16} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.382362312297584403921736391029, −8.285009514425261536606862730100, −7.87812821817991840514144201866, −7.84707080294341083990727521011, −6.85236417665708870950890672487, −6.84540041012799475709303137732, −6.81753576548860598969197882829, −6.78007886727422031769963349702, −6.23263701371292065621197775728, −6.15701734234634096751959333112, −5.84864965450425930601027105907, −4.93007695270004322912043205387, −4.82522139671866812909908280537, −4.70556754561475727879793889573, −4.26770725910292131673776824166, −3.49225738788241154555190202131, −3.48728783769269585981123515822, −3.23241000854690988859096143120, −2.37686793037892801058443048257, −2.27657183225363109289877669179, −1.76204595909258146720295669151, −1.70192340428518103648228015369, −0.66934435539707814803079890515, −0.49938773129759795278055456989, −0.43918422657607800956065491415, 0.43918422657607800956065491415, 0.49938773129759795278055456989, 0.66934435539707814803079890515, 1.70192340428518103648228015369, 1.76204595909258146720295669151, 2.27657183225363109289877669179, 2.37686793037892801058443048257, 3.23241000854690988859096143120, 3.48728783769269585981123515822, 3.49225738788241154555190202131, 4.26770725910292131673776824166, 4.70556754561475727879793889573, 4.82522139671866812909908280537, 4.93007695270004322912043205387, 5.84864965450425930601027105907, 6.15701734234634096751959333112, 6.23263701371292065621197775728, 6.78007886727422031769963349702, 6.81753576548860598969197882829, 6.84540041012799475709303137732, 6.85236417665708870950890672487, 7.84707080294341083990727521011, 7.87812821817991840514144201866, 8.285009514425261536606862730100, 8.382362312297584403921736391029

Graph of the $Z$-function along the critical line