Properties

Label 8-15e8-1.1-c2e4-0-4
Degree $8$
Conductor $2562890625$
Sign $1$
Analytic cond. $1412.76$
Root an. cond. $2.47604$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 17·16-s − 8·31-s − 472·61-s − 484·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + 233-s + 239-s + 241-s + ⋯
L(s)  = 1  − 1.06·16-s − 0.258·31-s − 7.73·61-s − 4·121-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + 0.00613·163-s + 0.00598·167-s + 0.00578·173-s + 0.00558·179-s + 0.00552·181-s + 0.00523·191-s + 0.00518·193-s + 0.00507·197-s + 0.00502·199-s + 0.00473·211-s + 0.00448·223-s + 0.00440·227-s + 0.00436·229-s + 0.00429·233-s + 0.00418·239-s + 0.00414·241-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{8} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{8} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s+1)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(3^{8} \cdot 5^{8}\)
Sign: $1$
Analytic conductor: \(1412.76\)
Root analytic conductor: \(2.47604\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 3^{8} \cdot 5^{8} ,\ ( \ : 1, 1, 1, 1 ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.6843660893\)
\(L(\frac12)\) \(\approx\) \(0.6843660893\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
good2$C_2^3$ \( 1 + 17 T^{4} + p^{8} T^{8} \)
7$C_2^2$ \( ( 1 + p^{4} T^{4} )^{2} \)
11$C_2$ \( ( 1 + p^{2} T^{2} )^{4} \)
13$C_2^2$ \( ( 1 + p^{4} T^{4} )^{2} \)
17$C_2^3$ \( 1 - 21118 T^{4} + p^{8} T^{8} \)
19$C_2^2$ \( ( 1 - 238 T^{2} + p^{4} T^{4} )^{2} \)
23$C_2^3$ \( 1 - 550078 T^{4} + p^{8} T^{8} \)
29$C_1$$\times$$C_1$ \( ( 1 - p T )^{4}( 1 + p T )^{4} \)
31$C_2$ \( ( 1 + 2 T + p^{2} T^{2} )^{4} \)
37$C_2^2$ \( ( 1 + p^{4} T^{4} )^{2} \)
41$C_2$ \( ( 1 + p^{2} T^{2} )^{4} \)
43$C_2^2$ \( ( 1 + p^{4} T^{4} )^{2} \)
47$C_2^3$ \( 1 + 8065922 T^{4} + p^{8} T^{8} \)
53$C_2^3$ \( 1 - 12619678 T^{4} + p^{8} T^{8} \)
59$C_1$$\times$$C_1$ \( ( 1 - p T )^{4}( 1 + p T )^{4} \)
61$C_2$ \( ( 1 + 118 T + p^{2} T^{2} )^{4} \)
67$C_2^2$ \( ( 1 + p^{4} T^{4} )^{2} \)
71$C_2$ \( ( 1 + p^{2} T^{2} )^{4} \)
73$C_2^2$ \( ( 1 + p^{4} T^{4} )^{2} \)
79$C_2^2$ \( ( 1 - 2878 T^{2} + p^{4} T^{4} )^{2} \)
83$C_2^3$ \( 1 + 3847202 T^{4} + p^{8} T^{8} \)
89$C_1$$\times$$C_1$ \( ( 1 - p T )^{4}( 1 + p T )^{4} \)
97$C_2^2$ \( ( 1 + p^{4} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.905540783836899547859258364014, −8.423910199680404325616157462590, −8.079842980441355550404663065878, −7.85132226455557793632681036504, −7.78083339993714620212889445127, −7.34932448818803496226290868625, −7.13162501031343482099412714156, −6.83470359526966996698559614028, −6.53662066308075619474913943166, −6.18726223284535473432464099101, −5.97385339340510507933544251691, −5.86308772050965908078271800714, −5.22016296116576028515421945105, −5.10460120676768696303338122180, −4.61530659453028256684999096811, −4.49388909844363532316251117371, −4.15707606957400268870748456939, −3.81373201045007655272614123957, −3.19714912121795200649681853331, −2.94385203799207676416137919646, −2.80711046425573059783359235721, −1.99420629929663501466532435632, −1.74148456731391894367844642438, −1.22303572408527344757818884820, −0.22981660182098228922443903012, 0.22981660182098228922443903012, 1.22303572408527344757818884820, 1.74148456731391894367844642438, 1.99420629929663501466532435632, 2.80711046425573059783359235721, 2.94385203799207676416137919646, 3.19714912121795200649681853331, 3.81373201045007655272614123957, 4.15707606957400268870748456939, 4.49388909844363532316251117371, 4.61530659453028256684999096811, 5.10460120676768696303338122180, 5.22016296116576028515421945105, 5.86308772050965908078271800714, 5.97385339340510507933544251691, 6.18726223284535473432464099101, 6.53662066308075619474913943166, 6.83470359526966996698559614028, 7.13162501031343482099412714156, 7.34932448818803496226290868625, 7.78083339993714620212889445127, 7.85132226455557793632681036504, 8.079842980441355550404663065878, 8.423910199680404325616157462590, 8.905540783836899547859258364014

Graph of the $Z$-function along the critical line