Properties

Label 8-15e8-1.1-c2e4-0-2
Degree $8$
Conductor $2562890625$
Sign $1$
Analytic cond. $1412.76$
Root an. cond. $2.47604$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 12·11-s + 7·16-s − 152·31-s − 228·41-s − 112·61-s − 168·71-s + 192·101-s − 394·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 84·176-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + ⋯
L(s)  = 1  + 1.09·11-s + 7/16·16-s − 4.90·31-s − 5.56·41-s − 1.83·61-s − 2.36·71-s + 1.90·101-s − 3.25·121-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + 0.00613·163-s + 0.00598·167-s + 0.00578·173-s + 0.477·176-s + 0.00558·179-s + 0.00552·181-s + 0.00523·191-s + 0.00518·193-s + 0.00507·197-s + 0.00502·199-s + 0.00473·211-s + 0.00448·223-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{8} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{8} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s+1)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(3^{8} \cdot 5^{8}\)
Sign: $1$
Analytic conductor: \(1412.76\)
Root analytic conductor: \(2.47604\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 3^{8} \cdot 5^{8} ,\ ( \ : 1, 1, 1, 1 ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.1053998706\)
\(L(\frac12)\) \(\approx\) \(0.1053998706\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
good2$C_2^3$ \( 1 - 7 T^{4} + p^{8} T^{8} \)
7$C_2^3$ \( 1 - 2302 T^{4} + p^{8} T^{8} \)
11$C_2$ \( ( 1 - 3 T + p^{2} T^{2} )^{4} \)
13$C_2^3$ \( 1 - 4222 T^{4} + p^{8} T^{8} \)
17$C_2^3$ \( 1 - 120817 T^{4} + p^{8} T^{8} \)
19$C_2^2$ \( ( 1 - 697 T^{2} + p^{4} T^{4} )^{2} \)
23$C_2^3$ \( 1 - 338782 T^{4} + p^{8} T^{8} \)
29$C_2^2$ \( ( 1 - 782 T^{2} + p^{4} T^{4} )^{2} \)
31$C_2$ \( ( 1 + 38 T + p^{2} T^{2} )^{4} \)
37$C_2^3$ \( 1 + 132578 T^{4} + p^{8} T^{8} \)
41$C_2$ \( ( 1 + 57 T + p^{2} T^{2} )^{4} \)
43$C_2^3$ \( 1 + 6484898 T^{4} + p^{8} T^{8} \)
47$C_2^3$ \( 1 + 8816738 T^{4} + p^{8} T^{8} \)
53$C_2^3$ \( 1 - 2892862 T^{4} + p^{8} T^{8} \)
59$C_2^2$ \( ( 1 + 1138 T^{2} + p^{4} T^{4} )^{2} \)
61$C_2$ \( ( 1 + 28 T + p^{2} T^{2} )^{4} \)
67$C_2^3$ \( 1 - 20810017 T^{4} + p^{8} T^{8} \)
71$C_2$ \( ( 1 + 42 T + p^{2} T^{2} )^{4} \)
73$C_2^3$ \( 1 + 49190543 T^{4} + p^{8} T^{8} \)
79$C_2^2$ \( ( 1 - 6082 T^{2} + p^{4} T^{4} )^{2} \)
83$C_2^3$ \( 1 + 27517583 T^{4} + p^{8} T^{8} \)
89$C_2^2$ \( ( 1 - 15617 T^{2} + p^{4} T^{4} )^{2} \)
97$C_2^3$ \( 1 - 7798462 T^{4} + p^{8} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.816064839565592963096325085293, −8.710995006050827522679517770718, −8.018394320683349624310175932110, −7.87686297864578694477561461757, −7.74443982720865783610740897097, −7.35171562604295048599959053234, −7.02211502905865862740468964520, −6.80711956296735100158460333586, −6.65053411589934279969974893977, −6.36828837680378856227475322096, −5.80268265136281967277961176080, −5.72655264966527574820639343107, −5.32998019900926768765505391095, −5.01976207111317051179412876354, −4.97818828669437133914202143160, −4.29146790071985406439510430553, −4.03637687945360938964497067194, −3.58728750946998076273035988448, −3.43481396056161488113640760637, −3.24975858714790882141130346495, −2.61123488384729660036919720633, −1.84883495312584071143165209526, −1.57094550524415515468253757216, −1.53185053427783047779234247959, −0.084607343842383066068466514975, 0.084607343842383066068466514975, 1.53185053427783047779234247959, 1.57094550524415515468253757216, 1.84883495312584071143165209526, 2.61123488384729660036919720633, 3.24975858714790882141130346495, 3.43481396056161488113640760637, 3.58728750946998076273035988448, 4.03637687945360938964497067194, 4.29146790071985406439510430553, 4.97818828669437133914202143160, 5.01976207111317051179412876354, 5.32998019900926768765505391095, 5.72655264966527574820639343107, 5.80268265136281967277961176080, 6.36828837680378856227475322096, 6.65053411589934279969974893977, 6.80711956296735100158460333586, 7.02211502905865862740468964520, 7.35171562604295048599959053234, 7.74443982720865783610740897097, 7.87686297864578694477561461757, 8.018394320683349624310175932110, 8.710995006050827522679517770718, 8.816064839565592963096325085293

Graph of the $Z$-function along the critical line