Properties

Label 8-15e4-1.1-c27e4-0-1
Degree $8$
Conductor $50625$
Sign $1$
Analytic cond. $2.30350\times 10^{7}$
Root an. cond. $8.32336$
Motivic weight $27$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $4$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.97e4·2-s + 6.37e6·3-s + 1.22e8·4-s − 4.88e9·5-s − 1.25e11·6-s + 3.51e11·7-s − 3.55e11·8-s + 2.54e13·9-s + 9.63e13·10-s − 2.89e13·11-s + 7.78e14·12-s − 5.69e14·13-s − 6.94e15·14-s − 3.11e16·15-s − 3.76e15·16-s − 7.15e15·17-s − 5.01e17·18-s − 3.37e16·19-s − 5.96e17·20-s + 2.24e18·21-s + 5.71e17·22-s − 8.61e18·23-s − 2.26e18·24-s + 1.49e19·25-s + 1.12e19·26-s + 8.10e19·27-s + 4.29e19·28-s + ⋯
L(s)  = 1  − 1.70·2-s + 2.30·3-s + 0.909·4-s − 1.78·5-s − 3.93·6-s + 1.37·7-s − 0.228·8-s + 10/3·9-s + 3.04·10-s − 0.253·11-s + 2.10·12-s − 0.521·13-s − 2.33·14-s − 4.13·15-s − 0.208·16-s − 0.175·17-s − 5.67·18-s − 0.184·19-s − 1.62·20-s + 3.17·21-s + 0.431·22-s − 3.56·23-s − 0.527·24-s + 2·25-s + 0.887·26-s + 3.84·27-s + 1.24·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 50625 ^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(28-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 50625 ^{s/2} \, \Gamma_{\C}(s+27/2)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(50625\)    =    \(3^{4} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(2.30350\times 10^{7}\)
Root analytic conductor: \(8.32336\)
Motivic weight: \(27\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(4\)
Selberg data: \((8,\ 50625,\ (\ :27/2, 27/2, 27/2, 27/2),\ 1)\)

Particular Values

\(L(14)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{29}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$ \( ( 1 - p^{13} T )^{4} \)
5$C_1$ \( ( 1 + p^{13} T )^{4} \)
good2$C_2 \wr S_4$ \( 1 + 9867 p T + 16707455 p^{4} T^{2} + 6290879177 p^{9} T^{3} + 318094206003 p^{17} T^{4} + 6290879177 p^{36} T^{5} + 16707455 p^{58} T^{6} + 9867 p^{82} T^{7} + p^{108} T^{8} \)
7$C_2 \wr S_4$ \( 1 - 7182531488 p^{2} T + \)\(32\!\cdots\!32\)\( p^{2} T^{2} - \)\(12\!\cdots\!44\)\( p^{5} T^{3} + \)\(32\!\cdots\!50\)\( p^{4} T^{4} - \)\(12\!\cdots\!44\)\( p^{32} T^{5} + \)\(32\!\cdots\!32\)\( p^{56} T^{6} - 7182531488 p^{83} T^{7} + p^{108} T^{8} \)
11$C_2 \wr S_4$ \( 1 + 28973681140224 T + \)\(22\!\cdots\!72\)\( p T^{2} - \)\(89\!\cdots\!20\)\( p^{2} T^{3} + \)\(19\!\cdots\!66\)\( p^{4} T^{4} - \)\(89\!\cdots\!20\)\( p^{29} T^{5} + \)\(22\!\cdots\!72\)\( p^{55} T^{6} + 28973681140224 p^{81} T^{7} + p^{108} T^{8} \)
13$C_2 \wr S_4$ \( 1 + 43775418691048 p T + \)\(75\!\cdots\!84\)\( p^{2} T^{2} + \)\(90\!\cdots\!56\)\( p^{3} T^{3} + \)\(77\!\cdots\!50\)\( p^{4} T^{4} + \)\(90\!\cdots\!56\)\( p^{30} T^{5} + \)\(75\!\cdots\!84\)\( p^{56} T^{6} + 43775418691048 p^{82} T^{7} + p^{108} T^{8} \)
17$C_2 \wr S_4$ \( 1 + 7152765494513496 T + \)\(31\!\cdots\!44\)\( p T^{2} + \)\(96\!\cdots\!80\)\( p^{2} T^{3} + \)\(25\!\cdots\!02\)\( p^{3} T^{4} + \)\(96\!\cdots\!80\)\( p^{29} T^{5} + \)\(31\!\cdots\!44\)\( p^{55} T^{6} + 7152765494513496 p^{81} T^{7} + p^{108} T^{8} \)
19$C_2 \wr S_4$ \( 1 + 33753130743907168 T + \)\(47\!\cdots\!88\)\( p T^{2} - \)\(13\!\cdots\!64\)\( p^{2} T^{3} + \)\(54\!\cdots\!86\)\( p^{3} T^{4} - \)\(13\!\cdots\!64\)\( p^{29} T^{5} + \)\(47\!\cdots\!88\)\( p^{55} T^{6} + 33753130743907168 p^{81} T^{7} + p^{108} T^{8} \)
23$C_2 \wr S_4$ \( 1 + 374557423878711792 p T + \)\(92\!\cdots\!08\)\( p^{2} T^{2} + \)\(14\!\cdots\!88\)\( p^{3} T^{3} + \)\(18\!\cdots\!90\)\( p^{4} T^{4} + \)\(14\!\cdots\!88\)\( p^{30} T^{5} + \)\(92\!\cdots\!08\)\( p^{56} T^{6} + 374557423878711792 p^{82} T^{7} + p^{108} T^{8} \)
29$C_2 \wr S_4$ \( 1 + 1665772391398631736 T - \)\(10\!\cdots\!20\)\( T^{2} - \)\(63\!\cdots\!68\)\( T^{3} + \)\(15\!\cdots\!78\)\( T^{4} - \)\(63\!\cdots\!68\)\( p^{27} T^{5} - \)\(10\!\cdots\!20\)\( p^{54} T^{6} + 1665772391398631736 p^{81} T^{7} + p^{108} T^{8} \)
31$C_2 \wr S_4$ \( 1 + 73781948023144578736 T + \)\(54\!\cdots\!68\)\( T^{2} + \)\(22\!\cdots\!88\)\( T^{3} + \)\(12\!\cdots\!54\)\( T^{4} + \)\(22\!\cdots\!88\)\( p^{27} T^{5} + \)\(54\!\cdots\!68\)\( p^{54} T^{6} + 73781948023144578736 p^{81} T^{7} + p^{108} T^{8} \)
37$C_2 \wr S_4$ \( 1 - \)\(86\!\cdots\!32\)\( T + \)\(42\!\cdots\!28\)\( T^{2} - \)\(13\!\cdots\!08\)\( T^{3} + \)\(88\!\cdots\!70\)\( T^{4} - \)\(13\!\cdots\!08\)\( p^{27} T^{5} + \)\(42\!\cdots\!28\)\( p^{54} T^{6} - \)\(86\!\cdots\!32\)\( p^{81} T^{7} + p^{108} T^{8} \)
41$C_2 \wr S_4$ \( 1 + \)\(12\!\cdots\!76\)\( T + \)\(27\!\cdots\!68\)\( p T^{2} + \)\(58\!\cdots\!28\)\( T^{3} + \)\(35\!\cdots\!34\)\( T^{4} + \)\(58\!\cdots\!28\)\( p^{27} T^{5} + \)\(27\!\cdots\!68\)\( p^{55} T^{6} + \)\(12\!\cdots\!76\)\( p^{81} T^{7} + p^{108} T^{8} \)
43$C_2 \wr S_4$ \( 1 - \)\(24\!\cdots\!40\)\( T + \)\(61\!\cdots\!20\)\( T^{2} - \)\(88\!\cdots\!80\)\( T^{3} + \)\(12\!\cdots\!98\)\( T^{4} - \)\(88\!\cdots\!80\)\( p^{27} T^{5} + \)\(61\!\cdots\!20\)\( p^{54} T^{6} - \)\(24\!\cdots\!40\)\( p^{81} T^{7} + p^{108} T^{8} \)
47$C_2 \wr S_4$ \( 1 + \)\(12\!\cdots\!40\)\( T + \)\(46\!\cdots\!80\)\( T^{2} + \)\(63\!\cdots\!20\)\( T^{3} + \)\(91\!\cdots\!38\)\( T^{4} + \)\(63\!\cdots\!20\)\( p^{27} T^{5} + \)\(46\!\cdots\!80\)\( p^{54} T^{6} + \)\(12\!\cdots\!40\)\( p^{81} T^{7} + p^{108} T^{8} \)
53$C_2 \wr S_4$ \( 1 + \)\(73\!\cdots\!16\)\( T + \)\(30\!\cdots\!12\)\( T^{2} + \)\(87\!\cdots\!76\)\( T^{3} + \)\(18\!\cdots\!50\)\( T^{4} + \)\(87\!\cdots\!76\)\( p^{27} T^{5} + \)\(30\!\cdots\!12\)\( p^{54} T^{6} + \)\(73\!\cdots\!16\)\( p^{81} T^{7} + p^{108} T^{8} \)
59$C_2 \wr S_4$ \( 1 - \)\(79\!\cdots\!88\)\( T + \)\(24\!\cdots\!12\)\( T^{2} - \)\(13\!\cdots\!16\)\( T^{3} + \)\(22\!\cdots\!34\)\( T^{4} - \)\(13\!\cdots\!16\)\( p^{27} T^{5} + \)\(24\!\cdots\!12\)\( p^{54} T^{6} - \)\(79\!\cdots\!88\)\( p^{81} T^{7} + p^{108} T^{8} \)
61$C_2 \wr S_4$ \( 1 - \)\(40\!\cdots\!40\)\( T + \)\(39\!\cdots\!16\)\( T^{2} - \)\(18\!\cdots\!60\)\( T^{3} + \)\(82\!\cdots\!46\)\( T^{4} - \)\(18\!\cdots\!60\)\( p^{27} T^{5} + \)\(39\!\cdots\!16\)\( p^{54} T^{6} - \)\(40\!\cdots\!40\)\( p^{81} T^{7} + p^{108} T^{8} \)
67$C_2 \wr S_4$ \( 1 - \)\(53\!\cdots\!64\)\( T + \)\(65\!\cdots\!28\)\( T^{2} - \)\(26\!\cdots\!00\)\( T^{3} + \)\(17\!\cdots\!66\)\( T^{4} - \)\(26\!\cdots\!00\)\( p^{27} T^{5} + \)\(65\!\cdots\!28\)\( p^{54} T^{6} - \)\(53\!\cdots\!64\)\( p^{81} T^{7} + p^{108} T^{8} \)
71$C_2 \wr S_4$ \( 1 + \)\(14\!\cdots\!12\)\( T + \)\(25\!\cdots\!68\)\( T^{2} + \)\(24\!\cdots\!84\)\( T^{3} + \)\(30\!\cdots\!70\)\( T^{4} + \)\(24\!\cdots\!84\)\( p^{27} T^{5} + \)\(25\!\cdots\!68\)\( p^{54} T^{6} + \)\(14\!\cdots\!12\)\( p^{81} T^{7} + p^{108} T^{8} \)
73$C_2 \wr S_4$ \( 1 + \)\(41\!\cdots\!36\)\( T + \)\(13\!\cdots\!32\)\( T^{2} + \)\(27\!\cdots\!36\)\( T^{3} + \)\(45\!\cdots\!90\)\( T^{4} + \)\(27\!\cdots\!36\)\( p^{27} T^{5} + \)\(13\!\cdots\!32\)\( p^{54} T^{6} + \)\(41\!\cdots\!36\)\( p^{81} T^{7} + p^{108} T^{8} \)
79$C_2 \wr S_4$ \( 1 - \)\(34\!\cdots\!80\)\( T + \)\(37\!\cdots\!36\)\( T^{2} - \)\(38\!\cdots\!60\)\( T^{3} + \)\(90\!\cdots\!34\)\( p T^{4} - \)\(38\!\cdots\!60\)\( p^{27} T^{5} + \)\(37\!\cdots\!36\)\( p^{54} T^{6} - \)\(34\!\cdots\!80\)\( p^{81} T^{7} + p^{108} T^{8} \)
83$C_2 \wr S_4$ \( 1 + \)\(32\!\cdots\!68\)\( T + \)\(60\!\cdots\!40\)\( T^{2} + \)\(74\!\cdots\!92\)\( T^{3} + \)\(69\!\cdots\!46\)\( T^{4} + \)\(74\!\cdots\!92\)\( p^{27} T^{5} + \)\(60\!\cdots\!40\)\( p^{54} T^{6} + \)\(32\!\cdots\!68\)\( p^{81} T^{7} + p^{108} T^{8} \)
89$C_2 \wr S_4$ \( 1 + \)\(26\!\cdots\!48\)\( T + \)\(72\!\cdots\!52\)\( T^{2} + \)\(11\!\cdots\!16\)\( T^{3} + \)\(33\!\cdots\!34\)\( T^{4} + \)\(11\!\cdots\!16\)\( p^{27} T^{5} + \)\(72\!\cdots\!52\)\( p^{54} T^{6} + \)\(26\!\cdots\!48\)\( p^{81} T^{7} + p^{108} T^{8} \)
97$C_2 \wr S_4$ \( 1 + \)\(26\!\cdots\!36\)\( T + \)\(34\!\cdots\!88\)\( T^{2} + \)\(30\!\cdots\!20\)\( T^{3} + \)\(21\!\cdots\!86\)\( T^{4} + \)\(30\!\cdots\!20\)\( p^{27} T^{5} + \)\(34\!\cdots\!88\)\( p^{54} T^{6} + \)\(26\!\cdots\!36\)\( p^{81} T^{7} + p^{108} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.645786507706348450426164510552, −8.785662663711480860844413638388, −8.587448474567917362637680191033, −8.508838293317693818572491279852, −8.354520875923876328974558589114, −7.81004849135266989118077360893, −7.68473987003525770043259842080, −7.64377270181993031363442793403, −7.19400155807380897794623107895, −6.60155518243812861761109347759, −6.37567162151094273721635410225, −5.57187450676840182897592198440, −5.28811418604824713914973154516, −4.52826924514269020663162641665, −4.29500672372175802411506517589, −4.16395844418772572917868743629, −4.06130851399824374063708228959, −3.20673148434097072229211243596, −3.15198191675583778470686801759, −2.76610443811211103260764408335, −2.18458475698317228836386692175, −2.09828437082055359723529559818, −1.43840774900393177627454773732, −1.43443024610090004240346298846, −1.12840139309614512216350554916, 0, 0, 0, 0, 1.12840139309614512216350554916, 1.43443024610090004240346298846, 1.43840774900393177627454773732, 2.09828437082055359723529559818, 2.18458475698317228836386692175, 2.76610443811211103260764408335, 3.15198191675583778470686801759, 3.20673148434097072229211243596, 4.06130851399824374063708228959, 4.16395844418772572917868743629, 4.29500672372175802411506517589, 4.52826924514269020663162641665, 5.28811418604824713914973154516, 5.57187450676840182897592198440, 6.37567162151094273721635410225, 6.60155518243812861761109347759, 7.19400155807380897794623107895, 7.64377270181993031363442793403, 7.68473987003525770043259842080, 7.81004849135266989118077360893, 8.354520875923876328974558589114, 8.508838293317693818572491279852, 8.587448474567917362637680191033, 8.785662663711480860844413638388, 9.645786507706348450426164510552

Graph of the $Z$-function along the critical line