Properties

Label 8-15e4-1.1-c25e4-0-0
Degree $8$
Conductor $50625$
Sign $1$
Analytic cond. $1.24489\times 10^{7}$
Root an. cond. $7.70710$
Motivic weight $25$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7.68e3·2-s + 2.12e6·3-s − 2.01e7·4-s − 9.76e8·5-s + 1.63e10·6-s + 2.49e10·7-s − 1.65e11·8-s + 2.82e12·9-s − 7.50e12·10-s + 9.98e12·11-s − 4.29e13·12-s − 1.43e14·13-s + 1.91e14·14-s − 2.07e15·15-s + 1.23e15·16-s + 2.80e15·17-s + 2.16e16·18-s + 1.50e16·19-s + 1.97e16·20-s + 5.29e16·21-s + 7.67e16·22-s + 4.87e16·23-s − 3.51e17·24-s + 5.96e17·25-s − 1.10e18·26-s + 3.00e18·27-s − 5.02e17·28-s + ⋯
L(s)  = 1  + 1.32·2-s + 2.30·3-s − 0.601·4-s − 1.78·5-s + 3.06·6-s + 0.680·7-s − 0.850·8-s + 10/3·9-s − 2.37·10-s + 0.959·11-s − 1.38·12-s − 1.70·13-s + 0.902·14-s − 4.13·15-s + 1.09·16-s + 1.16·17-s + 4.42·18-s + 1.55·19-s + 1.07·20-s + 1.57·21-s + 1.27·22-s + 0.464·23-s − 1.96·24-s + 2·25-s − 2.26·26-s + 3.84·27-s − 0.409·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 50625 ^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(26-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 50625 ^{s/2} \, \Gamma_{\C}(s+25/2)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(50625\)    =    \(3^{4} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(1.24489\times 10^{7}\)
Root analytic conductor: \(7.70710\)
Motivic weight: \(25\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 50625,\ (\ :25/2, 25/2, 25/2, 25/2),\ 1)\)

Particular Values

\(L(13)\) \(\approx\) \(22.90427774\)
\(L(\frac12)\) \(\approx\) \(22.90427774\)
\(L(\frac{27}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$ \( ( 1 - p^{12} T )^{4} \)
5$C_1$ \( ( 1 + p^{12} T )^{4} \)
good2$C_2 \wr S_4$ \( 1 - 7683 T + 19803275 p^{2} T^{2} - 9350685853 p^{6} T^{3} + 451253267883 p^{13} T^{4} - 9350685853 p^{31} T^{5} + 19803275 p^{52} T^{6} - 7683 p^{75} T^{7} + p^{100} T^{8} \)
7$C_2 \wr S_4$ \( 1 - 508422464 p^{2} T + 53246328028610032828 p^{2} T^{2} - \)\(61\!\cdots\!88\)\( p^{5} T^{3} + \)\(94\!\cdots\!30\)\( p^{9} T^{4} - \)\(61\!\cdots\!88\)\( p^{30} T^{5} + 53246328028610032828 p^{52} T^{6} - 508422464 p^{77} T^{7} + p^{100} T^{8} \)
11$C_2 \wr S_4$ \( 1 - 9989114586816 T + \)\(20\!\cdots\!12\)\( p T^{2} - \)\(67\!\cdots\!60\)\( p^{3} T^{3} + \)\(12\!\cdots\!86\)\( p^{5} T^{4} - \)\(67\!\cdots\!60\)\( p^{28} T^{5} + \)\(20\!\cdots\!12\)\( p^{51} T^{6} - 9989114586816 p^{75} T^{7} + p^{100} T^{8} \)
13$C_2 \wr S_4$ \( 1 + 143366199676168 T + \)\(19\!\cdots\!96\)\( p^{2} T^{2} + \)\(17\!\cdots\!44\)\( p^{2} T^{3} + \)\(16\!\cdots\!10\)\( p^{3} T^{4} + \)\(17\!\cdots\!44\)\( p^{27} T^{5} + \)\(19\!\cdots\!96\)\( p^{52} T^{6} + 143366199676168 p^{75} T^{7} + p^{100} T^{8} \)
17$C_2 \wr S_4$ \( 1 - 2801218397375112 T + \)\(11\!\cdots\!32\)\( T^{2} - \)\(16\!\cdots\!80\)\( p T^{3} + \)\(35\!\cdots\!54\)\( p^{2} T^{4} - \)\(16\!\cdots\!80\)\( p^{26} T^{5} + \)\(11\!\cdots\!32\)\( p^{50} T^{6} - 2801218397375112 p^{75} T^{7} + p^{100} T^{8} \)
19$C_2 \wr S_4$ \( 1 - 15008254302340928 T + \)\(18\!\cdots\!08\)\( p T^{2} - \)\(96\!\cdots\!96\)\( p^{2} T^{3} + \)\(67\!\cdots\!66\)\( p^{3} T^{4} - \)\(96\!\cdots\!96\)\( p^{27} T^{5} + \)\(18\!\cdots\!08\)\( p^{51} T^{6} - 15008254302340928 p^{75} T^{7} + p^{100} T^{8} \)
23$C_2 \wr S_4$ \( 1 - 48788561474090928 T + \)\(10\!\cdots\!36\)\( p T^{2} - \)\(26\!\cdots\!88\)\( p^{2} T^{3} + \)\(28\!\cdots\!30\)\( p^{3} T^{4} - \)\(26\!\cdots\!88\)\( p^{27} T^{5} + \)\(10\!\cdots\!36\)\( p^{51} T^{6} - 48788561474090928 p^{75} T^{7} + p^{100} T^{8} \)
29$C_2 \wr S_4$ \( 1 + 366855400436538264 T + \)\(37\!\cdots\!60\)\( T^{2} + \)\(81\!\cdots\!88\)\( T^{3} + \)\(13\!\cdots\!78\)\( T^{4} + \)\(81\!\cdots\!88\)\( p^{25} T^{5} + \)\(37\!\cdots\!60\)\( p^{50} T^{6} + 366855400436538264 p^{75} T^{7} + p^{100} T^{8} \)
31$C_2 \wr S_4$ \( 1 - 5266475512689038864 T + \)\(25\!\cdots\!28\)\( T^{2} - \)\(36\!\cdots\!92\)\( T^{3} + \)\(33\!\cdots\!34\)\( p T^{4} - \)\(36\!\cdots\!92\)\( p^{25} T^{5} + \)\(25\!\cdots\!28\)\( p^{50} T^{6} - 5266475512689038864 p^{75} T^{7} + p^{100} T^{8} \)
37$C_2 \wr S_4$ \( 1 + 82582977571412504584 T + \)\(49\!\cdots\!52\)\( T^{2} + \)\(21\!\cdots\!84\)\( T^{3} + \)\(90\!\cdots\!30\)\( T^{4} + \)\(21\!\cdots\!84\)\( p^{25} T^{5} + \)\(49\!\cdots\!52\)\( p^{50} T^{6} + 82582977571412504584 p^{75} T^{7} + p^{100} T^{8} \)
41$C_2 \wr S_4$ \( 1 - \)\(11\!\cdots\!44\)\( T + \)\(68\!\cdots\!68\)\( T^{2} - \)\(75\!\cdots\!92\)\( T^{3} + \)\(20\!\cdots\!34\)\( T^{4} - \)\(75\!\cdots\!92\)\( p^{25} T^{5} + \)\(68\!\cdots\!68\)\( p^{50} T^{6} - \)\(11\!\cdots\!44\)\( p^{75} T^{7} + p^{100} T^{8} \)
43$C_2 \wr S_4$ \( 1 - \)\(29\!\cdots\!60\)\( T + \)\(24\!\cdots\!80\)\( T^{2} - \)\(55\!\cdots\!80\)\( T^{3} + \)\(24\!\cdots\!98\)\( T^{4} - \)\(55\!\cdots\!80\)\( p^{25} T^{5} + \)\(24\!\cdots\!80\)\( p^{50} T^{6} - \)\(29\!\cdots\!60\)\( p^{75} T^{7} + p^{100} T^{8} \)
47$C_2 \wr S_4$ \( 1 + \)\(25\!\cdots\!20\)\( T + \)\(11\!\cdots\!20\)\( T^{2} - \)\(22\!\cdots\!60\)\( T^{3} + \)\(75\!\cdots\!98\)\( T^{4} - \)\(22\!\cdots\!60\)\( p^{25} T^{5} + \)\(11\!\cdots\!20\)\( p^{50} T^{6} + \)\(25\!\cdots\!20\)\( p^{75} T^{7} + p^{100} T^{8} \)
53$C_2 \wr S_4$ \( 1 + \)\(17\!\cdots\!12\)\( T + \)\(37\!\cdots\!48\)\( T^{2} + \)\(50\!\cdots\!88\)\( T^{3} + \)\(65\!\cdots\!30\)\( T^{4} + \)\(50\!\cdots\!88\)\( p^{25} T^{5} + \)\(37\!\cdots\!48\)\( p^{50} T^{6} + \)\(17\!\cdots\!12\)\( p^{75} T^{7} + p^{100} T^{8} \)
59$C_2 \wr S_4$ \( 1 - \)\(53\!\cdots\!32\)\( T + \)\(50\!\cdots\!92\)\( T^{2} - \)\(20\!\cdots\!44\)\( T^{3} + \)\(13\!\cdots\!14\)\( T^{4} - \)\(20\!\cdots\!44\)\( p^{25} T^{5} + \)\(50\!\cdots\!92\)\( p^{50} T^{6} - \)\(53\!\cdots\!32\)\( p^{75} T^{7} + p^{100} T^{8} \)
61$C_2 \wr S_4$ \( 1 - \)\(19\!\cdots\!00\)\( T + \)\(90\!\cdots\!76\)\( T^{2} - \)\(90\!\cdots\!00\)\( T^{3} + \)\(36\!\cdots\!46\)\( T^{4} - \)\(90\!\cdots\!00\)\( p^{25} T^{5} + \)\(90\!\cdots\!76\)\( p^{50} T^{6} - \)\(19\!\cdots\!00\)\( p^{75} T^{7} + p^{100} T^{8} \)
67$C_2 \wr S_4$ \( 1 - \)\(22\!\cdots\!72\)\( T + \)\(28\!\cdots\!72\)\( T^{2} - \)\(24\!\cdots\!40\)\( T^{3} + \)\(18\!\cdots\!86\)\( T^{4} - \)\(24\!\cdots\!40\)\( p^{25} T^{5} + \)\(28\!\cdots\!72\)\( p^{50} T^{6} - \)\(22\!\cdots\!72\)\( p^{75} T^{7} + p^{100} T^{8} \)
71$C_2 \wr S_4$ \( 1 - \)\(82\!\cdots\!08\)\( T + \)\(59\!\cdots\!28\)\( T^{2} - \)\(37\!\cdots\!56\)\( T^{3} + \)\(15\!\cdots\!70\)\( T^{4} - \)\(37\!\cdots\!56\)\( p^{25} T^{5} + \)\(59\!\cdots\!28\)\( p^{50} T^{6} - \)\(82\!\cdots\!08\)\( p^{75} T^{7} + p^{100} T^{8} \)
73$C_2 \wr S_4$ \( 1 - \)\(55\!\cdots\!68\)\( T + \)\(19\!\cdots\!28\)\( T^{2} - \)\(45\!\cdots\!72\)\( T^{3} + \)\(94\!\cdots\!10\)\( T^{4} - \)\(45\!\cdots\!72\)\( p^{25} T^{5} + \)\(19\!\cdots\!28\)\( p^{50} T^{6} - \)\(55\!\cdots\!68\)\( p^{75} T^{7} + p^{100} T^{8} \)
79$C_2 \wr S_4$ \( 1 - \)\(11\!\cdots\!60\)\( T + \)\(13\!\cdots\!96\)\( T^{2} - \)\(89\!\cdots\!20\)\( T^{3} + \)\(60\!\cdots\!06\)\( T^{4} - \)\(89\!\cdots\!20\)\( p^{25} T^{5} + \)\(13\!\cdots\!96\)\( p^{50} T^{6} - \)\(11\!\cdots\!60\)\( p^{75} T^{7} + p^{100} T^{8} \)
83$C_2 \wr S_4$ \( 1 - \)\(24\!\cdots\!04\)\( T + \)\(51\!\cdots\!80\)\( T^{2} - \)\(68\!\cdots\!24\)\( T^{3} + \)\(79\!\cdots\!86\)\( T^{4} - \)\(68\!\cdots\!24\)\( p^{25} T^{5} + \)\(51\!\cdots\!80\)\( p^{50} T^{6} - \)\(24\!\cdots\!04\)\( p^{75} T^{7} + p^{100} T^{8} \)
89$C_2 \wr S_4$ \( 1 - \)\(70\!\cdots\!08\)\( T + \)\(29\!\cdots\!92\)\( T^{2} - \)\(99\!\cdots\!96\)\( T^{3} + \)\(26\!\cdots\!14\)\( T^{4} - \)\(99\!\cdots\!96\)\( p^{25} T^{5} + \)\(29\!\cdots\!92\)\( p^{50} T^{6} - \)\(70\!\cdots\!08\)\( p^{75} T^{7} + p^{100} T^{8} \)
97$C_2 \wr S_4$ \( 1 + \)\(15\!\cdots\!48\)\( T + \)\(25\!\cdots\!92\)\( T^{2} + \)\(22\!\cdots\!20\)\( T^{3} + \)\(19\!\cdots\!26\)\( T^{4} + \)\(22\!\cdots\!20\)\( p^{25} T^{5} + \)\(25\!\cdots\!92\)\( p^{50} T^{6} + \)\(15\!\cdots\!48\)\( p^{75} T^{7} + p^{100} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.346873645726292149294916488371, −8.325547528233825224424389211631, −8.317259751826826183969629110515, −8.136292522333369605359543349736, −7.64468916716814958706246288650, −7.58826328908224768637822562626, −7.17524084573394015672300056272, −6.64978320328107853398323875115, −6.49399085545852135687838526245, −5.12235171484064995209276883425, −5.07634183991207681680698787477, −5.02556259219720869027533416339, −4.92807955516625055707674161483, −3.94149463711404978625598405558, −3.87431930887480337485871275675, −3.73617421678470521195760291944, −3.73157841179353888640425622708, −3.01043675034396624608411295354, −2.71331543781675627947522952760, −2.37971236324420732853021365012, −1.84497679327000558596779433659, −1.40337375114415808711643740281, −0.893521687496667237505534265448, −0.861197981949507243806230952593, −0.35443486371006702438996976480, 0.35443486371006702438996976480, 0.861197981949507243806230952593, 0.893521687496667237505534265448, 1.40337375114415808711643740281, 1.84497679327000558596779433659, 2.37971236324420732853021365012, 2.71331543781675627947522952760, 3.01043675034396624608411295354, 3.73157841179353888640425622708, 3.73617421678470521195760291944, 3.87431930887480337485871275675, 3.94149463711404978625598405558, 4.92807955516625055707674161483, 5.02556259219720869027533416339, 5.07634183991207681680698787477, 5.12235171484064995209276883425, 6.49399085545852135687838526245, 6.64978320328107853398323875115, 7.17524084573394015672300056272, 7.58826328908224768637822562626, 7.64468916716814958706246288650, 8.136292522333369605359543349736, 8.317259751826826183969629110515, 8.325547528233825224424389211631, 9.346873645726292149294916488371

Graph of the $Z$-function along the critical line