Properties

Label 8-1536e4-1.1-c3e4-0-4
Degree $8$
Conductor $5.566\times 10^{12}$
Sign $1$
Analytic cond. $6.74573\times 10^{7}$
Root an. cond. $9.51981$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 18·9-s + 520·17-s + 464·25-s − 88·41-s − 1.36e3·49-s + 928·73-s + 243·81-s + 2.36e3·89-s + 3.52e3·97-s − 5.99e3·113-s + 1.79e3·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 9.36e3·153-s + 157-s + 163-s + 167-s − 428·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + ⋯
L(s)  = 1  − 2/3·9-s + 7.41·17-s + 3.71·25-s − 0.335·41-s − 3.98·49-s + 1.48·73-s + 1/3·81-s + 2.81·89-s + 3.69·97-s − 4.98·113-s + 1.34·121-s + 0.000698·127-s + 0.000666·131-s + 0.000623·137-s + 0.000610·139-s + 0.000549·149-s + 0.000538·151-s − 4.94·153-s + 0.000508·157-s + 0.000480·163-s + 0.000463·167-s − 0.194·169-s + 0.000439·173-s + 0.000417·179-s + 0.000410·181-s + 0.000378·191-s + 0.000372·193-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{36} \cdot 3^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(4-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{36} \cdot 3^{4}\right)^{s/2} \, \Gamma_{\C}(s+3/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{36} \cdot 3^{4}\)
Sign: $1$
Analytic conductor: \(6.74573\times 10^{7}\)
Root analytic conductor: \(9.51981\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{36} \cdot 3^{4} ,\ ( \ : 3/2, 3/2, 3/2, 3/2 ),\ 1 )\)

Particular Values

\(L(2)\) \(\approx\) \(9.385863944\)
\(L(\frac12)\) \(\approx\) \(9.385863944\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( ( 1 + p^{2} T^{2} )^{2} \)
good5$C_2^2$ \( ( 1 - 232 T^{2} + p^{6} T^{4} )^{2} \)
7$C_2^2$ \( ( 1 + 684 T^{2} + p^{6} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 - 898 T^{2} + p^{6} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 + 214 T^{2} + p^{6} T^{4} )^{2} \)
17$C_2$ \( ( 1 - 130 T + p^{3} T^{2} )^{4} \)
19$C_2^2$ \( ( 1 - 6662 T^{2} + p^{6} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 - 9466 T^{2} + p^{6} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 - 5560 T^{2} + p^{6} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 + 35820 T^{2} + p^{6} T^{4} )^{2} \)
37$C_2^2$ \( ( 1 - 99506 T^{2} + p^{6} T^{4} )^{2} \)
41$C_2$ \( ( 1 + 22 T + p^{3} T^{2} )^{4} \)
43$C_2^2$ \( ( 1 - 144614 T^{2} + p^{6} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 + 94358 T^{2} + p^{6} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 - 293704 T^{2} + p^{6} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 - 213622 T^{2} + p^{6} T^{4} )^{2} \)
61$C_2^2$ \( ( 1 + 280510 T^{2} + p^{6} T^{4} )^{2} \)
67$C_2^2$ \( ( 1 - 471926 T^{2} + p^{6} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 + 634214 T^{2} + p^{6} T^{4} )^{2} \)
73$C_2$ \( ( 1 - 232 T + p^{3} T^{2} )^{4} \)
79$C_2^2$ \( ( 1 + 753516 T^{2} + p^{6} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 + 878510 T^{2} + p^{6} T^{4} )^{2} \)
89$C_2$ \( ( 1 - 590 T + p^{3} T^{2} )^{4} \)
97$C_2$ \( ( 1 - 882 T + p^{3} T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.37483857583903621483519414463, −6.11245811627820793148370154787, −6.03602948135561880716216032177, −5.52289032812634570842986095480, −5.43768341353080900737545985581, −5.26580877239353923257178460604, −5.05840302839084840631330229718, −4.96128245297631595082869169084, −4.90888573382486964983862899368, −4.41644898222817029004484846234, −4.01414080647556123084315098528, −3.70165926820421038495035177022, −3.34963946128575852829773391284, −3.30659273025519275321536819118, −3.26194867063116463217275559796, −3.03485193744276896686832695019, −2.95246513544080706464294351950, −2.35059118208543711165545394825, −2.11171610069943052011589727307, −1.58395083206004208407376483352, −1.25410279748361155897891919316, −1.10461460457556109960468495402, −1.01725672757802072959901131305, −0.75411850734899950683706515542, −0.28399442506119167375049669044, 0.28399442506119167375049669044, 0.75411850734899950683706515542, 1.01725672757802072959901131305, 1.10461460457556109960468495402, 1.25410279748361155897891919316, 1.58395083206004208407376483352, 2.11171610069943052011589727307, 2.35059118208543711165545394825, 2.95246513544080706464294351950, 3.03485193744276896686832695019, 3.26194867063116463217275559796, 3.30659273025519275321536819118, 3.34963946128575852829773391284, 3.70165926820421038495035177022, 4.01414080647556123084315098528, 4.41644898222817029004484846234, 4.90888573382486964983862899368, 4.96128245297631595082869169084, 5.05840302839084840631330229718, 5.26580877239353923257178460604, 5.43768341353080900737545985581, 5.52289032812634570842986095480, 6.03602948135561880716216032177, 6.11245811627820793148370154787, 6.37483857583903621483519414463

Graph of the $Z$-function along the critical line