Properties

Label 8-1536e4-1.1-c1e4-0-23
Degree $8$
Conductor $5.566\times 10^{12}$
Sign $1$
Analytic cond. $22629.4$
Root an. cond. $3.50214$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·5-s + 4·9-s + 20·25-s − 24·29-s + 32·45-s + 28·49-s + 24·53-s + 16·73-s + 7·81-s + 32·97-s − 8·101-s + 40·121-s − 40·125-s + 127-s + 131-s + 137-s + 139-s − 192·145-s + 149-s + 151-s + 157-s + 163-s + 167-s + 12·169-s + 173-s + 179-s + 181-s + ⋯
L(s)  = 1  + 3.57·5-s + 4/3·9-s + 4·25-s − 4.45·29-s + 4.77·45-s + 4·49-s + 3.29·53-s + 1.87·73-s + 7/9·81-s + 3.24·97-s − 0.796·101-s + 3.63·121-s − 3.57·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 15.9·145-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 0.923·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{36} \cdot 3^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{36} \cdot 3^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{36} \cdot 3^{4}\)
Sign: $1$
Analytic conductor: \(22629.4\)
Root analytic conductor: \(3.50214\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{36} \cdot 3^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(10.10620409\)
\(L(\frac12)\) \(\approx\) \(10.10620409\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2^2$ \( 1 - 4 T^{2} + p^{2} T^{4} \)
good5$C_2$ \( ( 1 - 2 T + p T^{2} )^{4} \)
7$C_2$ \( ( 1 - p T^{2} )^{4} \)
11$C_2^2$ \( ( 1 - 20 T^{2} + p^{2} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 - 6 T^{2} + p^{2} T^{4} )^{2} \)
17$C_2^2$ \( ( 1 - 14 T^{2} + p^{2} T^{4} )^{2} \)
19$C_2^2$ \( ( 1 + 28 T^{2} + p^{2} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 + 6 T^{2} + p^{2} T^{4} )^{2} \)
29$C_2$ \( ( 1 + 6 T + p T^{2} )^{4} \)
31$C_2^2$ \( ( 1 + 10 T^{2} + p^{2} T^{4} )^{2} \)
37$C_2^2$ \( ( 1 - 54 T^{2} + p^{2} T^{4} )^{2} \)
41$C_2^2$ \( ( 1 - 2 T^{2} + p^{2} T^{4} )^{2} \)
43$C_2^2$ \( ( 1 + 76 T^{2} + p^{2} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 - 66 T^{2} + p^{2} T^{4} )^{2} \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )^{4} \)
59$C_2^2$ \( ( 1 - 20 T^{2} + p^{2} T^{4} )^{2} \)
61$C_2$ \( ( 1 - 8 T + p T^{2} )^{2}( 1 + 8 T + p T^{2} )^{2} \)
67$C_2^2$ \( ( 1 + 124 T^{2} + p^{2} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 + 102 T^{2} + p^{2} T^{4} )^{2} \)
73$C_2$ \( ( 1 - 4 T + p T^{2} )^{4} \)
79$C_2^2$ \( ( 1 - 150 T^{2} + p^{2} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 - 4 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 + 2 T^{2} + p^{2} T^{4} )^{2} \)
97$C_2$ \( ( 1 - 8 T + p T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.79484301747638934233045093316, −6.46733200919290166575572695131, −6.27385470298349342703585772996, −5.89088120566121463826772902796, −5.80302727599945216287442985702, −5.57557092278598495330193474263, −5.54780159970249674670497524613, −5.45234558864586665058978879693, −5.34768188599883540857029705414, −4.83013584178370399785227651657, −4.47301969980647310622541193383, −4.30217931315052869576873636788, −4.01416508615682170033796390267, −3.77912332567335314500394543755, −3.72920245561915219828872716817, −3.27916131719965039637562337335, −3.03030740891582115868814638726, −2.28726654669050915849667372168, −2.24802957359246435592661474010, −2.17116407671517581217757924187, −2.03312369310078930700580700997, −1.80357524413558522450437031713, −1.36495372668161882719190326341, −0.977936771687180912640439980579, −0.53376406031675919981564104269, 0.53376406031675919981564104269, 0.977936771687180912640439980579, 1.36495372668161882719190326341, 1.80357524413558522450437031713, 2.03312369310078930700580700997, 2.17116407671517581217757924187, 2.24802957359246435592661474010, 2.28726654669050915849667372168, 3.03030740891582115868814638726, 3.27916131719965039637562337335, 3.72920245561915219828872716817, 3.77912332567335314500394543755, 4.01416508615682170033796390267, 4.30217931315052869576873636788, 4.47301969980647310622541193383, 4.83013584178370399785227651657, 5.34768188599883540857029705414, 5.45234558864586665058978879693, 5.54780159970249674670497524613, 5.57557092278598495330193474263, 5.80302727599945216287442985702, 5.89088120566121463826772902796, 6.27385470298349342703585772996, 6.46733200919290166575572695131, 6.79484301747638934233045093316

Graph of the $Z$-function along the critical line