Properties

Label 8-1536e4-1.1-c1e4-0-14
Degree $8$
Conductor $5.566\times 10^{12}$
Sign $1$
Analytic cond. $22629.4$
Root an. cond. $3.50214$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·7-s − 2·9-s − 8·17-s + 16·23-s + 8·25-s − 24·31-s + 24·41-s − 16·47-s + 16·49-s − 16·63-s + 48·71-s − 16·73-s − 40·79-s + 3·81-s − 8·89-s + 8·97-s + 8·103-s + 24·113-s − 64·119-s + 36·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 16·153-s + ⋯
L(s)  = 1  + 3.02·7-s − 2/3·9-s − 1.94·17-s + 3.33·23-s + 8/5·25-s − 4.31·31-s + 3.74·41-s − 2.33·47-s + 16/7·49-s − 2.01·63-s + 5.69·71-s − 1.87·73-s − 4.50·79-s + 1/3·81-s − 0.847·89-s + 0.812·97-s + 0.788·103-s + 2.25·113-s − 5.86·119-s + 3.27·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 1.29·153-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{36} \cdot 3^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{36} \cdot 3^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{36} \cdot 3^{4}\)
Sign: $1$
Analytic conductor: \(22629.4\)
Root analytic conductor: \(3.50214\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{36} \cdot 3^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(4.357940587\)
\(L(\frac12)\) \(\approx\) \(4.357940587\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( ( 1 + T^{2} )^{2} \)
good5$D_4\times C_2$ \( 1 - 8 T^{2} + 34 T^{4} - 8 p^{2} T^{6} + p^{4} T^{8} \)
7$D_{4}$ \( ( 1 - 4 T + 16 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 - 18 T^{2} + p^{2} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 - 18 T^{2} + p^{2} T^{4} )^{2} \)
17$C_4$ \( ( 1 + 4 T + 6 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
19$C_2^2$ \( ( 1 - 6 T^{2} + p^{2} T^{4} )^{2} \)
23$D_{4}$ \( ( 1 - 8 T + 54 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{2} \)
29$D_4\times C_2$ \( 1 - 104 T^{2} + 4354 T^{4} - 104 p^{2} T^{6} + p^{4} T^{8} \)
31$D_{4}$ \( ( 1 + 12 T + 96 T^{2} + 12 p T^{3} + p^{2} T^{4} )^{2} \)
37$D_4\times C_2$ \( 1 - 52 T^{2} + 1366 T^{4} - 52 p^{2} T^{6} + p^{4} T^{8} \)
41$C_4$ \( ( 1 - 12 T + 86 T^{2} - 12 p T^{3} + p^{2} T^{4} )^{2} \)
43$D_4\times C_2$ \( 1 - 76 T^{2} + 3094 T^{4} - 76 p^{2} T^{6} + p^{4} T^{8} \)
47$D_{4}$ \( ( 1 + 8 T + 38 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{2} \)
53$D_4\times C_2$ \( 1 - 8 T^{2} + 4066 T^{4} - 8 p^{2} T^{6} + p^{4} T^{8} \)
59$C_2^2$ \( ( 1 - 102 T^{2} + p^{2} T^{4} )^{2} \)
61$D_4\times C_2$ \( 1 - 148 T^{2} + 10870 T^{4} - 148 p^{2} T^{6} + p^{4} T^{8} \)
67$C_2^2$ \( ( 1 - 70 T^{2} + p^{2} T^{4} )^{2} \)
71$D_{4}$ \( ( 1 - 24 T + 278 T^{2} - 24 p T^{3} + p^{2} T^{4} )^{2} \)
73$D_{4}$ \( ( 1 + 8 T + 130 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{2} \)
79$D_{4}$ \( ( 1 + 20 T + 240 T^{2} + 20 p T^{3} + p^{2} T^{4} )^{2} \)
83$D_4\times C_2$ \( 1 - 68 T^{2} + 12886 T^{4} - 68 p^{2} T^{6} + p^{4} T^{8} \)
89$C_2$ \( ( 1 + 2 T + p T^{2} )^{4} \)
97$D_{4}$ \( ( 1 - 4 T + 70 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.86219544879729193268236531421, −6.59201299881828062643265550193, −6.26121947452536303248036694556, −5.96431332839633585578637011046, −5.95378892975004486847653585040, −5.53256636586702657274805994317, −5.25776965184202928497629176289, −5.21257076605588841353768201564, −4.96531371720447236051604204426, −4.74820959246706365763185651217, −4.60898812251931788802516369023, −4.52658214244835027700213485213, −4.18755519772350732052040507493, −3.82810363846197742029265266128, −3.42297991747308763712519065650, −3.42021298445737023451488307758, −3.00573779890433975733097045612, −2.66954469873067575026387657305, −2.48840206132413182436529400434, −1.98320913006221134631679663812, −1.97952953842009477607474181692, −1.57772741526845491161086173725, −1.29437511196760295176668582230, −0.930560314517740518581942210336, −0.39582559537767615330989319349, 0.39582559537767615330989319349, 0.930560314517740518581942210336, 1.29437511196760295176668582230, 1.57772741526845491161086173725, 1.97952953842009477607474181692, 1.98320913006221134631679663812, 2.48840206132413182436529400434, 2.66954469873067575026387657305, 3.00573779890433975733097045612, 3.42021298445737023451488307758, 3.42297991747308763712519065650, 3.82810363846197742029265266128, 4.18755519772350732052040507493, 4.52658214244835027700213485213, 4.60898812251931788802516369023, 4.74820959246706365763185651217, 4.96531371720447236051604204426, 5.21257076605588841353768201564, 5.25776965184202928497629176289, 5.53256636586702657274805994317, 5.95378892975004486847653585040, 5.96431332839633585578637011046, 6.26121947452536303248036694556, 6.59201299881828062643265550193, 6.86219544879729193268236531421

Graph of the $Z$-function along the critical line