Properties

Label 8-1400e4-1.1-c3e4-0-1
Degree $8$
Conductor $3.842\times 10^{12}$
Sign $1$
Analytic cond. $4.65560\times 10^{7}$
Root an. cond. $9.08860$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·9-s + 72·11-s + 236·19-s + 112·29-s + 40·31-s − 1.08e3·41-s − 98·49-s + 396·59-s − 692·61-s − 2.44e3·71-s − 1.16e3·79-s − 1.18e3·81-s − 1.19e3·89-s − 576·99-s + 7.02e3·101-s − 1.40e3·109-s + 2.02e3·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 5.05e3·169-s + ⋯
L(s)  = 1  − 0.296·9-s + 1.97·11-s + 2.84·19-s + 0.717·29-s + 0.231·31-s − 4.14·41-s − 2/7·49-s + 0.873·59-s − 1.45·61-s − 4.09·71-s − 1.66·79-s − 1.62·81-s − 1.41·89-s − 0.584·99-s + 6.91·101-s − 1.23·109-s + 1.51·121-s + 0.000698·127-s + 0.000666·131-s + 0.000623·137-s + 0.000610·139-s + 0.000549·149-s + 0.000538·151-s + 0.000508·157-s + 0.000480·163-s + 0.000463·167-s + 2.30·169-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 5^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(4-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 5^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+3/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{12} \cdot 5^{8} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(4.65560\times 10^{7}\)
Root analytic conductor: \(9.08860\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{12} \cdot 5^{8} \cdot 7^{4} ,\ ( \ : 3/2, 3/2, 3/2, 3/2 ),\ 1 )\)

Particular Values

\(L(2)\) \(\approx\) \(2.241067523\)
\(L(\frac12)\) \(\approx\) \(2.241067523\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
7$C_2$ \( ( 1 + p^{2} T^{2} )^{2} \)
good3$D_4\times C_2$ \( 1 + 8 T^{2} + 1246 T^{4} + 8 p^{6} T^{6} + p^{12} T^{8} \)
11$D_{4}$ \( ( 1 - 36 T + 934 T^{2} - 36 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
13$D_4\times C_2$ \( 1 - 5056 T^{2} + 13530702 T^{4} - 5056 p^{6} T^{6} + p^{12} T^{8} \)
17$D_4\times C_2$ \( 1 - 15516 T^{2} + 108330374 T^{4} - 15516 p^{6} T^{6} + p^{12} T^{8} \)
19$D_{4}$ \( ( 1 - 118 T + 7566 T^{2} - 118 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
23$D_4\times C_2$ \( 1 - 41436 T^{2} + 715443110 T^{4} - 41436 p^{6} T^{6} + p^{12} T^{8} \)
29$D_{4}$ \( ( 1 - 56 T + 21974 T^{2} - 56 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
31$D_{4}$ \( ( 1 - 20 T + 48510 T^{2} - 20 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
37$D_4\times C_2$ \( 1 - 64204 T^{2} + 4714100022 T^{4} - 64204 p^{6} T^{6} + p^{12} T^{8} \)
41$D_{4}$ \( ( 1 + 544 T + 193358 T^{2} + 544 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
43$D_4\times C_2$ \( 1 - 210812 T^{2} + 21856770966 T^{4} - 210812 p^{6} T^{6} + p^{12} T^{8} \)
47$D_4\times C_2$ \( 1 - 267948 T^{2} + 36714463334 T^{4} - 267948 p^{6} T^{6} + p^{12} T^{8} \)
53$D_4\times C_2$ \( 1 + 31380 T^{2} + 23351768246 T^{4} + 31380 p^{6} T^{6} + p^{12} T^{8} \)
59$D_{4}$ \( ( 1 - 198 T + 410926 T^{2} - 198 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
61$D_{4}$ \( ( 1 + 346 T + 429114 T^{2} + 346 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
67$D_4\times C_2$ \( 1 - 167884 T^{2} - 79838932650 T^{4} - 167884 p^{6} T^{6} + p^{12} T^{8} \)
71$D_{4}$ \( ( 1 + 1224 T + 980014 T^{2} + 1224 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
73$D_4\times C_2$ \( 1 - 1151996 T^{2} + 596571224550 T^{4} - 1151996 p^{6} T^{6} + p^{12} T^{8} \)
79$D_{4}$ \( ( 1 + 584 T + 997470 T^{2} + 584 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
83$D_4\times C_2$ \( 1 - 1278872 T^{2} + 872265367134 T^{4} - 1278872 p^{6} T^{6} + p^{12} T^{8} \)
89$D_{4}$ \( ( 1 + 596 T + 39542 T^{2} + 596 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
97$D_4\times C_2$ \( 1 - 2725724 T^{2} + 3318683676102 T^{4} - 2725724 p^{6} T^{6} + p^{12} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.40810194327137737173521499744, −6.30571430592949375214254241118, −6.04953619161145152978535813373, −5.66840752250464213729684667385, −5.63074609161738212300114384082, −5.43710907095316811477599594864, −5.05070536428194863446954068992, −4.89462493296201939464933350389, −4.58263851654938269761484760863, −4.53330816317961141692224388624, −4.24842444026676486656470374308, −3.89125587282130670110780743346, −3.49772882688069006845024295697, −3.41915376843964545069504544980, −3.29525788692032145681823756828, −3.07833857521894440977342454612, −2.63299870780505017505380886694, −2.60435721671910260537692342609, −1.91895429541183252204352800688, −1.62837326130889607811116394652, −1.47433320564953219016087964996, −1.31798557972557275880440614611, −0.998597255824915936325407135391, −0.55305775357214385828268586162, −0.16492319062770170421936353349, 0.16492319062770170421936353349, 0.55305775357214385828268586162, 0.998597255824915936325407135391, 1.31798557972557275880440614611, 1.47433320564953219016087964996, 1.62837326130889607811116394652, 1.91895429541183252204352800688, 2.60435721671910260537692342609, 2.63299870780505017505380886694, 3.07833857521894440977342454612, 3.29525788692032145681823756828, 3.41915376843964545069504544980, 3.49772882688069006845024295697, 3.89125587282130670110780743346, 4.24842444026676486656470374308, 4.53330816317961141692224388624, 4.58263851654938269761484760863, 4.89462493296201939464933350389, 5.05070536428194863446954068992, 5.43710907095316811477599594864, 5.63074609161738212300114384082, 5.66840752250464213729684667385, 6.04953619161145152978535813373, 6.30571430592949375214254241118, 6.40810194327137737173521499744

Graph of the $Z$-function along the critical line