Properties

Label 8-1400e4-1.1-c3e4-0-0
Degree $8$
Conductor $3.842\times 10^{12}$
Sign $1$
Analytic cond. $4.65560\times 10^{7}$
Root an. cond. $9.08860$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 67·9-s + 42·11-s − 204·19-s − 258·29-s + 640·31-s − 188·41-s − 98·49-s − 1.02e3·59-s − 452·61-s + 112·71-s − 2.59e3·79-s + 2.07e3·81-s − 1.09e3·89-s + 2.81e3·99-s − 280·101-s − 2.95e3·109-s − 4.18e3·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 311·169-s + ⋯
L(s)  = 1  + 2.48·9-s + 1.15·11-s − 2.46·19-s − 1.65·29-s + 3.70·31-s − 0.716·41-s − 2/7·49-s − 2.25·59-s − 0.948·61-s + 0.187·71-s − 3.69·79-s + 2.84·81-s − 1.30·89-s + 2.85·99-s − 0.275·101-s − 2.59·109-s − 3.14·121-s + 0.000698·127-s + 0.000666·131-s + 0.000623·137-s + 0.000610·139-s + 0.000549·149-s + 0.000538·151-s + 0.000508·157-s + 0.000480·163-s + 0.000463·167-s + 0.141·169-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 5^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(4-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 5^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+3/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{12} \cdot 5^{8} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(4.65560\times 10^{7}\)
Root analytic conductor: \(9.08860\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{12} \cdot 5^{8} \cdot 7^{4} ,\ ( \ : 3/2, 3/2, 3/2, 3/2 ),\ 1 )\)

Particular Values

\(L(2)\) \(\approx\) \(0.01877620525\)
\(L(\frac12)\) \(\approx\) \(0.01877620525\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
7$C_2$ \( ( 1 + p^{2} T^{2} )^{2} \)
good3$D_4\times C_2$ \( 1 - 67 T^{2} + 2416 T^{4} - 67 p^{6} T^{6} + p^{12} T^{8} \)
11$D_{4}$ \( ( 1 - 21 T + 2754 T^{2} - 21 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
13$D_4\times C_2$ \( 1 - 311 T^{2} + 7505592 T^{4} - 311 p^{6} T^{6} + p^{12} T^{8} \)
17$D_4\times C_2$ \( 1 - 2871 T^{2} + 39317744 T^{4} - 2871 p^{6} T^{6} + p^{12} T^{8} \)
19$D_{4}$ \( ( 1 + 102 T + 16246 T^{2} + 102 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
23$D_4\times C_2$ \( 1 - 32216 T^{2} + 535648110 T^{4} - 32216 p^{6} T^{6} + p^{12} T^{8} \)
29$D_{4}$ \( ( 1 + 129 T + 43284 T^{2} + 129 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
31$D_{4}$ \( ( 1 - 320 T + 80510 T^{2} - 320 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
37$D_4\times C_2$ \( 1 - 143244 T^{2} + 10204632502 T^{4} - 143244 p^{6} T^{6} + p^{12} T^{8} \)
41$D_{4}$ \( ( 1 + 94 T + 131218 T^{2} + 94 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
43$D_4\times C_2$ \( 1 - 273752 T^{2} + 30894105726 T^{4} - 273752 p^{6} T^{6} + p^{12} T^{8} \)
47$D_4\times C_2$ \( 1 - 394243 T^{2} + 60414549464 T^{4} - 394243 p^{6} T^{6} + p^{12} T^{8} \)
53$D_4\times C_2$ \( 1 - 512320 T^{2} + 108789156206 T^{4} - 512320 p^{6} T^{6} + p^{12} T^{8} \)
59$D_{4}$ \( ( 1 + 512 T + 247366 T^{2} + 512 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
61$D_{4}$ \( ( 1 + 226 T + 428114 T^{2} + 226 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
67$D_4\times C_2$ \( 1 - 745164 T^{2} + 270203734870 T^{4} - 745164 p^{6} T^{6} + p^{12} T^{8} \)
71$D_{4}$ \( ( 1 - 56 T + 659374 T^{2} - 56 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
73$D_4\times C_2$ \( 1 - 295356 T^{2} - 17377275290 T^{4} - 295356 p^{6} T^{6} + p^{12} T^{8} \)
79$D_{4}$ \( ( 1 + 1299 T + 1390390 T^{2} + 1299 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
83$D_4\times C_2$ \( 1 + 913188 T^{2} + 587868432374 T^{4} + 913188 p^{6} T^{6} + p^{12} T^{8} \)
89$D_{4}$ \( ( 1 + 546 T + 343842 T^{2} + 546 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
97$D_4\times C_2$ \( 1 + 781681 T^{2} + 196993826592 T^{4} + 781681 p^{6} T^{6} + p^{12} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.47013684407008706475005977127, −6.32008658533302122538072383396, −6.17206775214756408508309886884, −5.83504964658209104933924099292, −5.61267731492464935385889392117, −5.37812298790810630577350332709, −5.00607089242555600940266183771, −4.57647095552185499671406165616, −4.48594508832571429582032372344, −4.48577097742272058482215825701, −4.35127727092287869474669748563, −4.02921944309691121312384883630, −3.82121194402024102143385941800, −3.52702625248941281442973361374, −3.23612404491590756933041070199, −2.90361289945450604899387107729, −2.62691020933837482333606479424, −2.31971294062190783430694814386, −2.11789391513811598092936206407, −1.59384793561737100311554564604, −1.44923130298634689824617534285, −1.26506110830427708390383609014, −1.20067917861148291472594361753, −0.50492939321116025110337415184, −0.01487574382765514623396181328, 0.01487574382765514623396181328, 0.50492939321116025110337415184, 1.20067917861148291472594361753, 1.26506110830427708390383609014, 1.44923130298634689824617534285, 1.59384793561737100311554564604, 2.11789391513811598092936206407, 2.31971294062190783430694814386, 2.62691020933837482333606479424, 2.90361289945450604899387107729, 3.23612404491590756933041070199, 3.52702625248941281442973361374, 3.82121194402024102143385941800, 4.02921944309691121312384883630, 4.35127727092287869474669748563, 4.48577097742272058482215825701, 4.48594508832571429582032372344, 4.57647095552185499671406165616, 5.00607089242555600940266183771, 5.37812298790810630577350332709, 5.61267731492464935385889392117, 5.83504964658209104933924099292, 6.17206775214756408508309886884, 6.32008658533302122538072383396, 6.47013684407008706475005977127

Graph of the $Z$-function along the critical line