Properties

Label 8-1400e4-1.1-c1e4-0-7
Degree $8$
Conductor $3.842\times 10^{12}$
Sign $1$
Analytic cond. $15617.8$
Root an. cond. $3.34350$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·9-s + 2·11-s − 10·19-s + 24·29-s − 8·31-s − 20·41-s − 2·49-s + 16·59-s + 24·61-s − 16·71-s + 28·79-s + 9·81-s + 12·89-s − 4·99-s − 24·101-s − 8·109-s + 23·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 34·169-s + ⋯
L(s)  = 1  − 2/3·9-s + 0.603·11-s − 2.29·19-s + 4.45·29-s − 1.43·31-s − 3.12·41-s − 2/7·49-s + 2.08·59-s + 3.07·61-s − 1.89·71-s + 3.15·79-s + 81-s + 1.27·89-s − 0.402·99-s − 2.38·101-s − 0.766·109-s + 2.09·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 2.61·169-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 5^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 5^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{12} \cdot 5^{8} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(15617.8\)
Root analytic conductor: \(3.34350\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{12} \cdot 5^{8} \cdot 7^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(2.736560605\)
\(L(\frac12)\) \(\approx\) \(2.736560605\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
7$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
good3$C_2^3$ \( 1 + 2 T^{2} - 5 T^{4} + 2 p^{2} T^{6} + p^{4} T^{8} \)
11$C_2^2$ \( ( 1 - T - 10 T^{2} - p T^{3} + p^{2} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 - 17 T^{2} + p^{2} T^{4} )^{2} \)
17$C_2^2$$\times$$C_2^2$ \( ( 1 - 8 T + 47 T^{2} - 8 p T^{3} + p^{2} T^{4} )( 1 + 8 T + 47 T^{2} + 8 p T^{3} + p^{2} T^{4} ) \)
19$C_2^2$ \( ( 1 + 5 T + 6 T^{2} + 5 p T^{3} + p^{2} T^{4} )^{2} \)
23$C_2^3$ \( 1 - 3 T^{2} - 520 T^{4} - 3 p^{2} T^{6} + p^{4} T^{8} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )^{4} \)
31$C_2$ \( ( 1 - 7 T + p T^{2} )^{2}( 1 + 11 T + p T^{2} )^{2} \)
37$C_2^3$ \( 1 + 49 T^{2} + 1032 T^{4} + 49 p^{2} T^{6} + p^{4} T^{8} \)
41$C_2$ \( ( 1 + 5 T + p T^{2} )^{4} \)
43$C_2^2$ \( ( 1 - 50 T^{2} + p^{2} T^{4} )^{2} \)
47$C_2^3$ \( 1 + 13 T^{2} - 2040 T^{4} + 13 p^{2} T^{6} + p^{4} T^{8} \)
53$C_2^3$ \( 1 - 15 T^{2} - 2584 T^{4} - 15 p^{2} T^{6} + p^{4} T^{8} \)
59$C_2^2$ \( ( 1 - 8 T + 5 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{2} \)
61$C_2^2$ \( ( 1 - 12 T + 83 T^{2} - 12 p T^{3} + p^{2} T^{4} )^{2} \)
67$C_2^3$ \( 1 + 118 T^{2} + 9435 T^{4} + 118 p^{2} T^{6} + p^{4} T^{8} \)
71$C_2$ \( ( 1 + 4 T + p T^{2} )^{4} \)
73$C_2^3$ \( 1 + 2 T^{2} - 5325 T^{4} + 2 p^{2} T^{6} + p^{4} T^{8} \)
79$C_2^2$ \( ( 1 - 14 T + 117 T^{2} - 14 p T^{3} + p^{2} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 - 150 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 - 6 T - 53 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2} \)
97$C_2^2$ \( ( 1 - 158 T^{2} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.82708818289721519086904105408, −6.56597762052751732988513436027, −6.47887112433296232073742489007, −6.35562038286817850766142056728, −5.96972413819591610267129714264, −5.70032763215459659024571135303, −5.58670142686039896710079978726, −5.17153634662819944737670411144, −4.99809023060385495247102344943, −4.96541716030442589235518553448, −4.48728692404637249036578006919, −4.44006574932971259656464994554, −4.17887144443436498109158338451, −3.78452168032819384951494684738, −3.58395363244916475216193540501, −3.39322805017192450587754902124, −3.21309133647609429473080002735, −2.63836008266889495588638296476, −2.51435494090858670129710842555, −2.33219141980804770340483815664, −1.97601280831452375196762100091, −1.62329028416028736711852175576, −1.25058585158651339437805787567, −0.68876421221699789902845641128, −0.43085976744882913828925056628, 0.43085976744882913828925056628, 0.68876421221699789902845641128, 1.25058585158651339437805787567, 1.62329028416028736711852175576, 1.97601280831452375196762100091, 2.33219141980804770340483815664, 2.51435494090858670129710842555, 2.63836008266889495588638296476, 3.21309133647609429473080002735, 3.39322805017192450587754902124, 3.58395363244916475216193540501, 3.78452168032819384951494684738, 4.17887144443436498109158338451, 4.44006574932971259656464994554, 4.48728692404637249036578006919, 4.96541716030442589235518553448, 4.99809023060385495247102344943, 5.17153634662819944737670411144, 5.58670142686039896710079978726, 5.70032763215459659024571135303, 5.96972413819591610267129714264, 6.35562038286817850766142056728, 6.47887112433296232073742489007, 6.56597762052751732988513436027, 6.82708818289721519086904105408

Graph of the $Z$-function along the critical line