Properties

Label 8-1400e4-1.1-c1e4-0-4
Degree $8$
Conductor $3.842\times 10^{12}$
Sign $1$
Analytic cond. $15617.8$
Root an. cond. $3.34350$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5·9-s − 4·11-s − 4·19-s − 36·29-s − 8·31-s + 4·41-s − 11·49-s − 20·59-s − 18·61-s + 56·71-s + 28·79-s + 9·81-s − 30·89-s + 20·99-s − 6·101-s − 2·109-s + 26·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 52·169-s + ⋯
L(s)  = 1  − 5/3·9-s − 1.20·11-s − 0.917·19-s − 6.68·29-s − 1.43·31-s + 0.624·41-s − 1.57·49-s − 2.60·59-s − 2.30·61-s + 6.64·71-s + 3.15·79-s + 81-s − 3.17·89-s + 2.01·99-s − 0.597·101-s − 0.191·109-s + 2.36·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 4·169-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 5^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 5^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{12} \cdot 5^{8} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(15617.8\)
Root analytic conductor: \(3.34350\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{12} \cdot 5^{8} \cdot 7^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.5071427996\)
\(L(\frac12)\) \(\approx\) \(0.5071427996\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
7$C_2^2$ \( 1 + 11 T^{2} + p^{2} T^{4} \)
good3$C_2^3$ \( 1 + 5 T^{2} + 16 T^{4} + 5 p^{2} T^{6} + p^{4} T^{8} \)
11$C_2^2$ \( ( 1 + 2 T - 7 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
13$C_2$ \( ( 1 - p T^{2} )^{4} \)
17$C_2^3$ \( 1 + 18 T^{2} + 35 T^{4} + 18 p^{2} T^{6} + p^{4} T^{8} \)
19$C_2^2$ \( ( 1 + 2 T - 15 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
23$C_2^3$ \( 1 + 45 T^{2} + 1496 T^{4} + 45 p^{2} T^{6} + p^{4} T^{8} \)
29$C_2$ \( ( 1 + 9 T + p T^{2} )^{4} \)
31$C_2$ \( ( 1 - 7 T + p T^{2} )^{2}( 1 + 11 T + p T^{2} )^{2} \)
37$C_2^3$ \( 1 + 58 T^{2} + 1995 T^{4} + 58 p^{2} T^{6} + p^{4} T^{8} \)
41$C_2$ \( ( 1 - T + p T^{2} )^{4} \)
43$C_2^2$ \( ( 1 - 5 T^{2} + p^{2} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 + p T^{2} + p^{2} T^{4} )^{2} \)
53$C_2^3$ \( 1 + 6 T^{2} - 2773 T^{4} + 6 p^{2} T^{6} + p^{4} T^{8} \)
59$C_2^2$ \( ( 1 + 10 T + 41 T^{2} + 10 p T^{3} + p^{2} T^{4} )^{2} \)
61$C_2^2$ \( ( 1 + 9 T + 20 T^{2} + 9 p T^{3} + p^{2} T^{4} )^{2} \)
67$C_2^2$$\times$$C_2^2$ \( ( 1 - 13 T^{2} + p^{2} T^{4} )( 1 + 122 T^{2} + p^{2} T^{4} ) \)
71$C_2$ \( ( 1 - 14 T + p T^{2} )^{4} \)
73$C_2^3$ \( 1 + 2 T^{2} - 5325 T^{4} + 2 p^{2} T^{6} + p^{4} T^{8} \)
79$C_2^2$ \( ( 1 - 14 T + 117 T^{2} - 14 p T^{3} + p^{2} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 - 45 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 + 15 T + 136 T^{2} + 15 p T^{3} + p^{2} T^{4} )^{2} \)
97$C_2$ \( ( 1 - 8 T + p T^{2} )^{2}( 1 + 8 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.96411468009677848550885179092, −6.45192933827419956587209055068, −6.41358048075850871332563902085, −6.05563665250773354964402971804, −5.83179161131033372613572089833, −5.73011305717528525436359989637, −5.63949061459481675727639200303, −5.31430870361603401102157181646, −5.02516477771015952698130739756, −4.91319735809698487200322051045, −4.88760439311596312604560381989, −4.22494646622992729183394093757, −4.00272399517110502234880523777, −3.73283270797228823878172899156, −3.66271441719513265454371565313, −3.35922544540925577761682698651, −3.23922381633568738896739154300, −2.66158356379609903894073574869, −2.62835528059228636525604196630, −2.05511623152055733804699600409, −1.94066432002736558143614523660, −1.87203923973009453159345560663, −1.41421674611134668641749669216, −0.37116713737588800641613554818, −0.29255729232755309651972439819, 0.29255729232755309651972439819, 0.37116713737588800641613554818, 1.41421674611134668641749669216, 1.87203923973009453159345560663, 1.94066432002736558143614523660, 2.05511623152055733804699600409, 2.62835528059228636525604196630, 2.66158356379609903894073574869, 3.23922381633568738896739154300, 3.35922544540925577761682698651, 3.66271441719513265454371565313, 3.73283270797228823878172899156, 4.00272399517110502234880523777, 4.22494646622992729183394093757, 4.88760439311596312604560381989, 4.91319735809698487200322051045, 5.02516477771015952698130739756, 5.31430870361603401102157181646, 5.63949061459481675727639200303, 5.73011305717528525436359989637, 5.83179161131033372613572089833, 6.05563665250773354964402971804, 6.41358048075850871332563902085, 6.45192933827419956587209055068, 6.96411468009677848550885179092

Graph of the $Z$-function along the critical line