Properties

Label 8-1400e4-1.1-c1e4-0-0
Degree $8$
Conductor $3.842\times 10^{12}$
Sign $1$
Analytic cond. $15617.8$
Root an. cond. $3.34350$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5·9-s + 4·11-s + 12·19-s + 12·29-s − 28·41-s + 13·49-s − 20·59-s − 10·61-s − 40·71-s + 12·79-s + 9·81-s + 34·89-s − 20·99-s + 34·101-s − 10·109-s + 26·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 20·169-s − 60·171-s + ⋯
L(s)  = 1  − 5/3·9-s + 1.20·11-s + 2.75·19-s + 2.22·29-s − 4.37·41-s + 13/7·49-s − 2.60·59-s − 1.28·61-s − 4.74·71-s + 1.35·79-s + 81-s + 3.60·89-s − 2.01·99-s + 3.38·101-s − 0.957·109-s + 2.36·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 1.53·169-s − 4.58·171-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 5^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 5^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{12} \cdot 5^{8} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(15617.8\)
Root analytic conductor: \(3.34350\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{12} \cdot 5^{8} \cdot 7^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.1388873904\)
\(L(\frac12)\) \(\approx\) \(0.1388873904\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
7$C_2^2$ \( 1 - 13 T^{2} + p^{2} T^{4} \)
good3$C_2^3$ \( 1 + 5 T^{2} + 16 T^{4} + 5 p^{2} T^{6} + p^{4} T^{8} \)
11$C_2^2$ \( ( 1 - 2 T - 7 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
13$C_2$ \( ( 1 - 6 T + p T^{2} )^{2}( 1 + 6 T + p T^{2} )^{2} \)
17$C_2^2$ \( ( 1 + p T^{2} + p^{2} T^{4} )^{2} \)
19$C_2^2$ \( ( 1 - 6 T + 17 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2} \)
23$C_2^3$ \( 1 + 37 T^{2} + 840 T^{4} + 37 p^{2} T^{6} + p^{4} T^{8} \)
29$C_2$ \( ( 1 - 3 T + p T^{2} )^{4} \)
31$C_2^2$ \( ( 1 - p T^{2} + p^{2} T^{4} )^{2} \)
37$C_2^2$$\times$$C_2^2$ \( ( 1 - 2 T - 33 T^{2} - 2 p T^{3} + p^{2} T^{4} )( 1 + 2 T - 33 T^{2} + 2 p T^{3} + p^{2} T^{4} ) \)
41$C_2$ \( ( 1 + 7 T + p T^{2} )^{4} \)
43$C_2^2$ \( ( 1 - 5 T^{2} + p^{2} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 + p T^{2} + p^{2} T^{4} )^{2} \)
53$C_2^3$ \( 1 + 70 T^{2} + 2091 T^{4} + 70 p^{2} T^{6} + p^{4} T^{8} \)
59$C_2^2$ \( ( 1 + 10 T + 41 T^{2} + 10 p T^{3} + p^{2} T^{4} )^{2} \)
61$C_2^2$ \( ( 1 + 5 T - 36 T^{2} + 5 p T^{3} + p^{2} T^{4} )^{2} \)
67$C_2^2$$\times$$C_2^2$ \( ( 1 - 109 T^{2} + p^{2} T^{4} )( 1 + 122 T^{2} + p^{2} T^{4} ) \)
71$C_2$ \( ( 1 + 10 T + p T^{2} )^{4} \)
73$C_2^3$ \( 1 + 82 T^{2} + 1395 T^{4} + 82 p^{2} T^{6} + p^{4} T^{8} \)
79$C_2^2$ \( ( 1 - 6 T - 43 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 - 157 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 - 17 T + 200 T^{2} - 17 p T^{3} + p^{2} T^{4} )^{2} \)
97$C_2^2$ \( ( 1 - 190 T^{2} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.83078533784247317800508408900, −6.31936931835528091249048309640, −6.29147724460214324233297888925, −6.27758126451646121187334014346, −5.99768990619082366079163978303, −5.99713427961379273547716370704, −5.38545465149968097661784053724, −5.13014655968554989062592739967, −5.05394865355582098786243154960, −5.00970025529159122714410260969, −4.74458856265836579783423488414, −4.27460452263891181140785659261, −4.25683563651642515280401964899, −3.64342013336130122110598624939, −3.50118076867954482843762302973, −3.21114239033019530988827467853, −3.14883063946513827653123226655, −3.11786366517122804357721820476, −2.41873872865100778907975871267, −2.41415810248508784954108643651, −1.95411974131313597969562195462, −1.30801961132419506638461242743, −1.18993694856978543327212632836, −1.13915499897296286695030653829, −0.07322748617058085621290372614, 0.07322748617058085621290372614, 1.13915499897296286695030653829, 1.18993694856978543327212632836, 1.30801961132419506638461242743, 1.95411974131313597969562195462, 2.41415810248508784954108643651, 2.41873872865100778907975871267, 3.11786366517122804357721820476, 3.14883063946513827653123226655, 3.21114239033019530988827467853, 3.50118076867954482843762302973, 3.64342013336130122110598624939, 4.25683563651642515280401964899, 4.27460452263891181140785659261, 4.74458856265836579783423488414, 5.00970025529159122714410260969, 5.05394865355582098786243154960, 5.13014655968554989062592739967, 5.38545465149968097661784053724, 5.99713427961379273547716370704, 5.99768990619082366079163978303, 6.27758126451646121187334014346, 6.29147724460214324233297888925, 6.31936931835528091249048309640, 6.83078533784247317800508408900

Graph of the $Z$-function along the critical line