Properties

Label 8-13e8-1.1-c9e4-0-0
Degree $8$
Conductor $815730721$
Sign $1$
Analytic cond. $5.73979\times 10^{7}$
Root an. cond. $9.32957$
Motivic weight $9$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $4$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 33·2-s − 163·3-s + 235·4-s − 471·5-s − 5.37e3·6-s + 1.12e4·7-s + 5.32e3·8-s − 4.10e4·9-s − 1.55e4·10-s + 4.01e4·11-s − 3.83e4·12-s + 3.70e5·14-s + 7.67e4·15-s + 2.42e5·16-s + 7.87e4·17-s − 1.35e6·18-s − 2.09e5·19-s − 1.10e5·20-s − 1.83e6·21-s + 1.32e6·22-s − 4.25e6·23-s − 8.67e5·24-s − 5.24e6·25-s + 8.51e6·27-s + 2.64e6·28-s − 1.64e6·29-s + 2.53e6·30-s + ⋯
L(s)  = 1  + 1.45·2-s − 1.16·3-s + 0.458·4-s − 0.337·5-s − 1.69·6-s + 1.76·7-s + 0.459·8-s − 2.08·9-s − 0.491·10-s + 0.826·11-s − 0.533·12-s + 2.58·14-s + 0.391·15-s + 0.925·16-s + 0.228·17-s − 3.04·18-s − 0.369·19-s − 0.154·20-s − 2.05·21-s + 1.20·22-s − 3.17·23-s − 0.534·24-s − 2.68·25-s + 3.08·27-s + 0.812·28-s − 0.432·29-s + 0.571·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(13^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(10-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(13^{8}\right)^{s/2} \, \Gamma_{\C}(s+9/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(13^{8}\)
Sign: $1$
Analytic conductor: \(5.73979\times 10^{7}\)
Root analytic conductor: \(9.32957\)
Motivic weight: \(9\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(4\)
Selberg data: \((8,\ 13^{8} ,\ ( \ : 9/2, 9/2, 9/2, 9/2 ),\ 1 )\)

Particular Values

\(L(5)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad13 \( 1 \)
good2$C_2 \wr S_4$ \( 1 - 33 T + 427 p T^{2} - 3219 p^{3} T^{3} + 9097 p^{6} T^{4} - 3219 p^{12} T^{5} + 427 p^{19} T^{6} - 33 p^{27} T^{7} + p^{36} T^{8} \)
3$C_2 \wr S_4$ \( 1 + 163 T + 67627 T^{2} + 3067592 p T^{3} + 212179120 p^{2} T^{4} + 3067592 p^{10} T^{5} + 67627 p^{18} T^{6} + 163 p^{27} T^{7} + p^{36} T^{8} \)
5$C_2 \wr S_4$ \( 1 + 471 T + 5467249 T^{2} + 2978826294 T^{3} + 2762975487438 p T^{4} + 2978826294 p^{9} T^{5} + 5467249 p^{18} T^{6} + 471 p^{27} T^{7} + p^{36} T^{8} \)
7$C_2 \wr S_4$ \( 1 - 11241 T + 18891399 p T^{2} - 2792105460 p^{3} T^{3} + 22711650939506 p^{3} T^{4} - 2792105460 p^{12} T^{5} + 18891399 p^{19} T^{6} - 11241 p^{27} T^{7} + p^{36} T^{8} \)
11$C_2 \wr S_4$ \( 1 - 40140 T + 5207212188 T^{2} - 260939722519836 T^{3} + 16186230268309124390 T^{4} - 260939722519836 p^{9} T^{5} + 5207212188 p^{18} T^{6} - 40140 p^{27} T^{7} + p^{36} T^{8} \)
17$C_2 \wr S_4$ \( 1 - 78717 T + 179543541353 T^{2} + 34209748146126354 T^{3} + \)\(16\!\cdots\!82\)\( T^{4} + 34209748146126354 p^{9} T^{5} + 179543541353 p^{18} T^{6} - 78717 p^{27} T^{7} + p^{36} T^{8} \)
19$C_2 \wr S_4$ \( 1 + 209664 T + 58556387148 p T^{2} + 9405441041308416 p T^{3} + \)\(51\!\cdots\!22\)\( T^{4} + 9405441041308416 p^{10} T^{5} + 58556387148 p^{19} T^{6} + 209664 p^{27} T^{7} + p^{36} T^{8} \)
23$C_2 \wr S_4$ \( 1 + 4257444 T + 7366209360108 T^{2} + 5287090655000044788 T^{3} + \)\(22\!\cdots\!34\)\( T^{4} + 5287090655000044788 p^{9} T^{5} + 7366209360108 p^{18} T^{6} + 4257444 p^{27} T^{7} + p^{36} T^{8} \)
29$C_2 \wr S_4$ \( 1 + 1647936 T + 37315906740828 T^{2} + 63599271454922849280 T^{3} + \)\(66\!\cdots\!74\)\( T^{4} + 63599271454922849280 p^{9} T^{5} + 37315906740828 p^{18} T^{6} + 1647936 p^{27} T^{7} + p^{36} T^{8} \)
31$C_2 \wr S_4$ \( 1 - 11366002 T + 118630502542644 T^{2} - \)\(68\!\cdots\!18\)\( T^{3} + \)\(42\!\cdots\!06\)\( T^{4} - \)\(68\!\cdots\!18\)\( p^{9} T^{5} + 118630502542644 p^{18} T^{6} - 11366002 p^{27} T^{7} + p^{36} T^{8} \)
37$C_2 \wr S_4$ \( 1 + 4636891 T + 361056879801945 T^{2} + \)\(14\!\cdots\!94\)\( T^{3} + \)\(66\!\cdots\!34\)\( T^{4} + \)\(14\!\cdots\!94\)\( p^{9} T^{5} + 361056879801945 p^{18} T^{6} + 4636891 p^{27} T^{7} + p^{36} T^{8} \)
41$C_2 \wr S_4$ \( 1 + 13859538 T + 1246904510238356 T^{2} + \)\(13\!\cdots\!86\)\( T^{3} + \)\(60\!\cdots\!42\)\( T^{4} + \)\(13\!\cdots\!86\)\( p^{9} T^{5} + 1246904510238356 p^{18} T^{6} + 13859538 p^{27} T^{7} + p^{36} T^{8} \)
43$C_2 \wr S_4$ \( 1 + 33368081 T + 1484927456162487 T^{2} + \)\(42\!\cdots\!12\)\( T^{3} + \)\(10\!\cdots\!24\)\( T^{4} + \)\(42\!\cdots\!12\)\( p^{9} T^{5} + 1484927456162487 p^{18} T^{6} + 33368081 p^{27} T^{7} + p^{36} T^{8} \)
47$C_2 \wr S_4$ \( 1 - 3943005 T + 2343750668926273 T^{2} - \)\(81\!\cdots\!96\)\( T^{3} + \)\(37\!\cdots\!54\)\( T^{4} - \)\(81\!\cdots\!96\)\( p^{9} T^{5} + 2343750668926273 p^{18} T^{6} - 3943005 p^{27} T^{7} + p^{36} T^{8} \)
53$C_2 \wr S_4$ \( 1 + 171019326 T + 20398534023554412 T^{2} + \)\(16\!\cdots\!86\)\( T^{3} + \)\(11\!\cdots\!66\)\( T^{4} + \)\(16\!\cdots\!86\)\( p^{9} T^{5} + 20398534023554412 p^{18} T^{6} + 171019326 p^{27} T^{7} + p^{36} T^{8} \)
59$C_2 \wr S_4$ \( 1 - 63389388 T + 18604706307570428 T^{2} - \)\(24\!\cdots\!68\)\( T^{3} + \)\(14\!\cdots\!74\)\( T^{4} - \)\(24\!\cdots\!68\)\( p^{9} T^{5} + 18604706307570428 p^{18} T^{6} - 63389388 p^{27} T^{7} + p^{36} T^{8} \)
61$C_2 \wr S_4$ \( 1 - 77050190 T + 39401474083082580 T^{2} - \)\(26\!\cdots\!86\)\( T^{3} + \)\(65\!\cdots\!70\)\( T^{4} - \)\(26\!\cdots\!86\)\( p^{9} T^{5} + 39401474083082580 p^{18} T^{6} - 77050190 p^{27} T^{7} + p^{36} T^{8} \)
67$C_2 \wr S_4$ \( 1 - 41174072 T + 67202484458082900 T^{2} - \)\(19\!\cdots\!28\)\( T^{3} + \)\(23\!\cdots\!46\)\( T^{4} - \)\(19\!\cdots\!28\)\( p^{9} T^{5} + 67202484458082900 p^{18} T^{6} - 41174072 p^{27} T^{7} + p^{36} T^{8} \)
71$C_2 \wr S_4$ \( 1 + 252460989 T + 144403365822266409 T^{2} + \)\(44\!\cdots\!68\)\( p T^{3} + \)\(90\!\cdots\!90\)\( T^{4} + \)\(44\!\cdots\!68\)\( p^{10} T^{5} + 144403365822266409 p^{18} T^{6} + 252460989 p^{27} T^{7} + p^{36} T^{8} \)
73$C_2 \wr S_4$ \( 1 + 594415068 T + 287796385433349156 T^{2} + \)\(92\!\cdots\!76\)\( T^{3} + \)\(26\!\cdots\!46\)\( T^{4} + \)\(92\!\cdots\!76\)\( p^{9} T^{5} + 287796385433349156 p^{18} T^{6} + 594415068 p^{27} T^{7} + p^{36} T^{8} \)
79$C_2 \wr S_4$ \( 1 - 115998984 T + 371265024783771132 T^{2} - \)\(33\!\cdots\!80\)\( T^{3} + \)\(62\!\cdots\!58\)\( T^{4} - \)\(33\!\cdots\!80\)\( p^{9} T^{5} + 371265024783771132 p^{18} T^{6} - 115998984 p^{27} T^{7} + p^{36} T^{8} \)
83$C_2 \wr S_4$ \( 1 - 79577862 T + 6204891761421028 p T^{2} - \)\(86\!\cdots\!46\)\( T^{3} + \)\(12\!\cdots\!38\)\( T^{4} - \)\(86\!\cdots\!46\)\( p^{9} T^{5} + 6204891761421028 p^{19} T^{6} - 79577862 p^{27} T^{7} + p^{36} T^{8} \)
89$C_2 \wr S_4$ \( 1 - 1152240276 T + 746897787143209636 T^{2} - \)\(27\!\cdots\!00\)\( T^{3} - \)\(70\!\cdots\!14\)\( T^{4} - \)\(27\!\cdots\!00\)\( p^{9} T^{5} + 746897787143209636 p^{18} T^{6} - 1152240276 p^{27} T^{7} + p^{36} T^{8} \)
97$C_2 \wr S_4$ \( 1 + 1049098084 T + 2374666548574190388 T^{2} + \)\(23\!\cdots\!60\)\( T^{3} + \)\(24\!\cdots\!74\)\( T^{4} + \)\(23\!\cdots\!60\)\( p^{9} T^{5} + 2374666548574190388 p^{18} T^{6} + 1049098084 p^{27} T^{7} + p^{36} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.177444379757210569547643378660, −7.86354074932348836783735663476, −7.72487323949760296990932108050, −7.63260386179063267935671012699, −6.81771021583112483600610350337, −6.43984036369092908324497654228, −6.26569634044310824633102830947, −6.12422590326429875583262375866, −6.08646671200236855495067991256, −5.31972382649754524275630073508, −5.29396751519507043200359864932, −5.21266029606430997500689457507, −4.96134839808983785881099866051, −4.46347658996413836047935326627, −4.12156070933077662387073169292, −4.01699070405270239660959956502, −3.93521097688111131934080267540, −3.35660515892335501071083341130, −3.02848665352434925060751580562, −2.66431920568666230516531536975, −2.11235660075551636512891955672, −2.00955452680269101512066702834, −1.58747777393703079772071775130, −1.31615991956061662446486552378, −1.00789806563369914359942812168, 0, 0, 0, 0, 1.00789806563369914359942812168, 1.31615991956061662446486552378, 1.58747777393703079772071775130, 2.00955452680269101512066702834, 2.11235660075551636512891955672, 2.66431920568666230516531536975, 3.02848665352434925060751580562, 3.35660515892335501071083341130, 3.93521097688111131934080267540, 4.01699070405270239660959956502, 4.12156070933077662387073169292, 4.46347658996413836047935326627, 4.96134839808983785881099866051, 5.21266029606430997500689457507, 5.29396751519507043200359864932, 5.31972382649754524275630073508, 6.08646671200236855495067991256, 6.12422590326429875583262375866, 6.26569634044310824633102830947, 6.43984036369092908324497654228, 6.81771021583112483600610350337, 7.63260386179063267935671012699, 7.72487323949760296990932108050, 7.86354074932348836783735663476, 8.177444379757210569547643378660

Graph of the $Z$-function along the critical line