Properties

Label 8-136e4-1.1-c5e4-0-0
Degree $8$
Conductor $342102016$
Sign $1$
Analytic cond. $226359.$
Root an. cond. $4.67035$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 10·3-s + 104·5-s + 86·7-s − 210·9-s + 338·11-s − 1.32e3·13-s + 1.04e3·15-s − 1.15e3·17-s + 1.56e3·19-s + 860·21-s − 2.81e3·23-s + 1.14e3·25-s − 478·27-s + 3.75e3·29-s + 4.66e3·31-s + 3.38e3·33-s + 8.94e3·35-s + 1.36e4·37-s − 1.32e4·39-s + 368·41-s + 3.22e4·43-s − 2.18e4·45-s + 3.74e3·47-s + 2.79e3·49-s − 1.15e4·51-s − 3.89e4·53-s + 3.51e4·55-s + ⋯
L(s)  = 1  + 0.641·3-s + 1.86·5-s + 0.663·7-s − 0.864·9-s + 0.842·11-s − 2.16·13-s + 1.19·15-s − 0.970·17-s + 0.993·19-s + 0.425·21-s − 1.10·23-s + 0.366·25-s − 0.126·27-s + 0.828·29-s + 0.871·31-s + 0.540·33-s + 1.23·35-s + 1.63·37-s − 1.38·39-s + 0.0341·41-s + 2.66·43-s − 1.60·45-s + 0.247·47-s + 0.166·49-s − 0.622·51-s − 1.90·53-s + 1.56·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 17^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(6-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 17^{4}\right)^{s/2} \, \Gamma_{\C}(s+5/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{12} \cdot 17^{4}\)
Sign: $1$
Analytic conductor: \(226359.\)
Root analytic conductor: \(4.67035\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{12} \cdot 17^{4} ,\ ( \ : 5/2, 5/2, 5/2, 5/2 ),\ 1 )\)

Particular Values

\(L(3)\) \(\approx\) \(1.846071260\)
\(L(\frac12)\) \(\approx\) \(1.846071260\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
17$C_1$ \( ( 1 + p^{2} T )^{4} \)
good3$C_2 \wr S_4$ \( 1 - 10 T + 310 T^{2} - 1574 p T^{3} + 14954 p^{2} T^{4} - 1574 p^{6} T^{5} + 310 p^{10} T^{6} - 10 p^{15} T^{7} + p^{20} T^{8} \)
5$C_2 \wr S_4$ \( 1 - 104 T + 9672 T^{2} - 87768 p T^{3} + 28097758 T^{4} - 87768 p^{6} T^{5} + 9672 p^{10} T^{6} - 104 p^{15} T^{7} + p^{20} T^{8} \)
7$C_2 \wr S_4$ \( 1 - 86 T + 4602 T^{2} - 245634 p T^{3} + 174191338 T^{4} - 245634 p^{6} T^{5} + 4602 p^{10} T^{6} - 86 p^{15} T^{7} + p^{20} T^{8} \)
11$C_2 \wr S_4$ \( 1 - 338 T + 314046 T^{2} - 172644330 T^{3} + 49242725706 T^{4} - 172644330 p^{5} T^{5} + 314046 p^{10} T^{6} - 338 p^{15} T^{7} + p^{20} T^{8} \)
13$C_2 \wr S_4$ \( 1 + 1320 T + 1532768 T^{2} + 1273698984 T^{3} + 66744089030 p T^{4} + 1273698984 p^{5} T^{5} + 1532768 p^{10} T^{6} + 1320 p^{15} T^{7} + p^{20} T^{8} \)
19$C_2 \wr S_4$ \( 1 - 1564 T + 8396852 T^{2} - 9381321468 T^{3} + 29442844037542 T^{4} - 9381321468 p^{5} T^{5} + 8396852 p^{10} T^{6} - 1564 p^{15} T^{7} + p^{20} T^{8} \)
23$C_2 \wr S_4$ \( 1 + 2814 T + 863102 p T^{2} + 36515721814 T^{3} + 162882710476186 T^{4} + 36515721814 p^{5} T^{5} + 863102 p^{11} T^{6} + 2814 p^{15} T^{7} + p^{20} T^{8} \)
29$C_2 \wr S_4$ \( 1 - 3752 T + 68425512 T^{2} - 211008473400 T^{3} + 1999712061455422 T^{4} - 211008473400 p^{5} T^{5} + 68425512 p^{10} T^{6} - 3752 p^{15} T^{7} + p^{20} T^{8} \)
31$C_2 \wr S_4$ \( 1 - 4662 T + 36077058 T^{2} + 8563279714 T^{3} + 497738872815642 T^{4} + 8563279714 p^{5} T^{5} + 36077058 p^{10} T^{6} - 4662 p^{15} T^{7} + p^{20} T^{8} \)
37$C_2 \wr S_4$ \( 1 - 13632 T + 208973496 T^{2} - 60758676736 p T^{3} + 18560929952169342 T^{4} - 60758676736 p^{6} T^{5} + 208973496 p^{10} T^{6} - 13632 p^{15} T^{7} + p^{20} T^{8} \)
41$C_2 \wr S_4$ \( 1 - 368 T + 387798588 T^{2} - 248783824656 T^{3} + 63345264354808870 T^{4} - 248783824656 p^{5} T^{5} + 387798588 p^{10} T^{6} - 368 p^{15} T^{7} + p^{20} T^{8} \)
43$C_2 \wr S_4$ \( 1 - 32284 T + 684961380 T^{2} - 10263674062876 T^{3} + 137034342754397414 T^{4} - 10263674062876 p^{5} T^{5} + 684961380 p^{10} T^{6} - 32284 p^{15} T^{7} + p^{20} T^{8} \)
47$C_2 \wr S_4$ \( 1 - 3744 T + 547295884 T^{2} - 2115853463072 T^{3} + 177502146711063334 T^{4} - 2115853463072 p^{5} T^{5} + 547295884 p^{10} T^{6} - 3744 p^{15} T^{7} + p^{20} T^{8} \)
53$C_2 \wr S_4$ \( 1 + 38928 T + 1608406332 T^{2} + 39761542534512 T^{3} + 1031664775658389622 T^{4} + 39761542534512 p^{5} T^{5} + 1608406332 p^{10} T^{6} + 38928 p^{15} T^{7} + p^{20} T^{8} \)
59$C_2 \wr S_4$ \( 1 - 62212 T + 3936215908 T^{2} - 134429294892612 T^{3} + 4535303195280507302 T^{4} - 134429294892612 p^{5} T^{5} + 3936215908 p^{10} T^{6} - 62212 p^{15} T^{7} + p^{20} T^{8} \)
61$C_2 \wr S_4$ \( 1 + 30904 T + 2491679208 T^{2} + 41607123282120 T^{3} + 2513447874329882110 T^{4} + 41607123282120 p^{5} T^{5} + 2491679208 p^{10} T^{6} + 30904 p^{15} T^{7} + p^{20} T^{8} \)
67$C_2 \wr S_4$ \( 1 - 8488 T + 2908160732 T^{2} - 44862583648872 T^{3} + 4240986363463776086 T^{4} - 44862583648872 p^{5} T^{5} + 2908160732 p^{10} T^{6} - 8488 p^{15} T^{7} + p^{20} T^{8} \)
71$C_2 \wr S_4$ \( 1 - 183202 T + 19163804602 T^{2} - 1319268863593194 T^{3} + 65788183366586389706 T^{4} - 1319268863593194 p^{5} T^{5} + 19163804602 p^{10} T^{6} - 183202 p^{15} T^{7} + p^{20} T^{8} \)
73$C_2 \wr S_4$ \( 1 + 182600 T + 18716829660 T^{2} + 1325811423588152 T^{3} + 69986524534561196006 T^{4} + 1325811423588152 p^{5} T^{5} + 18716829660 p^{10} T^{6} + 182600 p^{15} T^{7} + p^{20} T^{8} \)
79$C_2 \wr S_4$ \( 1 - 5498 T + 2047112386 T^{2} - 48680660605010 T^{3} + 17947417745646631546 T^{4} - 48680660605010 p^{5} T^{5} + 2047112386 p^{10} T^{6} - 5498 p^{15} T^{7} + p^{20} T^{8} \)
83$C_2 \wr S_4$ \( 1 + 93700 T + 13585653316 T^{2} + 864395330027236 T^{3} + 73383870134391102342 T^{4} + 864395330027236 p^{5} T^{5} + 13585653316 p^{10} T^{6} + 93700 p^{15} T^{7} + p^{20} T^{8} \)
89$C_2 \wr S_4$ \( 1 + 187552 T + 29478039568 T^{2} + 2991445537163344 T^{3} + \)\(26\!\cdots\!14\)\( T^{4} + 2991445537163344 p^{5} T^{5} + 29478039568 p^{10} T^{6} + 187552 p^{15} T^{7} + p^{20} T^{8} \)
97$C_2 \wr S_4$ \( 1 + 145856 T + 9087264716 T^{2} + 1395322241606016 T^{3} + \)\(21\!\cdots\!10\)\( T^{4} + 1395322241606016 p^{5} T^{5} + 9087264716 p^{10} T^{6} + 145856 p^{15} T^{7} + p^{20} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.840579020873936242505047122651, −8.354817522115026114733688969349, −8.220106659761534032384179227195, −7.982943097014896556890511742566, −7.74165814637127184041070212135, −7.36722609022903346296174206861, −6.84370504357440642786334014570, −6.64562814464375625241500159896, −6.63072399056919545999148240937, −5.94947889494079207123411613772, −5.69396249188406451777434997222, −5.49813945115637418124637585088, −5.40022024258064814744371594712, −4.78978354913241472265427365597, −4.34759262709665263459029640737, −4.17524713441373834248664791097, −3.99751539843244915722287294507, −2.98798615686567678855488075664, −2.68959217417690019472634555799, −2.53258597690028306909243255259, −2.44557548806737361308810699814, −1.71544175175805117800541349929, −1.42025786251043284163993564120, −0.961818111734242057887636442536, −0.17564888349009143166956883502, 0.17564888349009143166956883502, 0.961818111734242057887636442536, 1.42025786251043284163993564120, 1.71544175175805117800541349929, 2.44557548806737361308810699814, 2.53258597690028306909243255259, 2.68959217417690019472634555799, 2.98798615686567678855488075664, 3.99751539843244915722287294507, 4.17524713441373834248664791097, 4.34759262709665263459029640737, 4.78978354913241472265427365597, 5.40022024258064814744371594712, 5.49813945115637418124637585088, 5.69396249188406451777434997222, 5.94947889494079207123411613772, 6.63072399056919545999148240937, 6.64562814464375625241500159896, 6.84370504357440642786334014570, 7.36722609022903346296174206861, 7.74165814637127184041070212135, 7.982943097014896556890511742566, 8.220106659761534032384179227195, 8.354817522115026114733688969349, 8.840579020873936242505047122651

Graph of the $Z$-function along the critical line