Properties

Label 8-136e4-1.1-c2e4-0-2
Degree $8$
Conductor $342102016$
Sign $1$
Analytic cond. $188.580$
Root an. cond. $1.92502$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·3-s + 46·9-s − 4·11-s − 16·16-s + 48·17-s − 48·19-s + 184·27-s − 32·33-s + 96·41-s + 28·43-s − 128·48-s + 384·51-s − 384·57-s + 164·59-s − 336·67-s − 48·73-s + 610·81-s + 316·83-s − 52·97-s − 184·99-s − 188·107-s + 288·113-s − 38·121-s + 768·123-s + 127-s + 224·129-s + 131-s + ⋯
L(s)  = 1  + 8/3·3-s + 46/9·9-s − 0.363·11-s − 16-s + 2.82·17-s − 2.52·19-s + 6.81·27-s − 0.969·33-s + 2.34·41-s + 0.651·43-s − 8/3·48-s + 7.52·51-s − 6.73·57-s + 2.77·59-s − 5.01·67-s − 0.657·73-s + 7.53·81-s + 3.80·83-s − 0.536·97-s − 1.85·99-s − 1.75·107-s + 2.54·113-s − 0.314·121-s + 6.24·123-s + 0.00787·127-s + 1.73·129-s + 0.00763·131-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 17^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 17^{4}\right)^{s/2} \, \Gamma_{\C}(s+1)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{12} \cdot 17^{4}\)
Sign: $1$
Analytic conductor: \(188.580\)
Root analytic conductor: \(1.92502\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{12} \cdot 17^{4} ,\ ( \ : 1, 1, 1, 1 ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(7.749886630\)
\(L(\frac12)\) \(\approx\) \(7.749886630\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2^2$ \( 1 + p^{4} T^{4} \)
17$C_2^2$ \( 1 - 48 T + 1152 T^{2} - 48 p^{2} T^{3} + p^{4} T^{4} \)
good3$C_2^2$$\times$$C_2^2$ \( ( 1 - 8 T + 32 T^{2} - 8 p^{2} T^{3} + p^{4} T^{4} )( 1 - 14 T^{2} + p^{4} T^{4} ) \)
5$C_4\times C_2$ \( 1 + p^{8} T^{8} \)
7$C_4\times C_2$ \( 1 + p^{8} T^{8} \)
11$C_2$$\times$$C_2^2$ \( ( 1 + 14 T + p^{2} T^{2} )^{2}( 1 - 24 T + 288 T^{2} - 24 p^{2} T^{3} + p^{4} T^{4} ) \)
13$C_2$ \( ( 1 + p^{2} T^{2} )^{4} \)
19$C_2^2$ \( ( 1 + 24 T + 288 T^{2} + 24 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
23$C_4\times C_2$ \( 1 + p^{8} T^{8} \)
29$C_4\times C_2$ \( 1 + p^{8} T^{8} \)
31$C_4\times C_2$ \( 1 + p^{8} T^{8} \)
37$C_4\times C_2$ \( 1 + p^{8} T^{8} \)
41$C_2^2$$\times$$C_2^2$ \( ( 1 - 96 T + 4608 T^{2} - 96 p^{2} T^{3} + p^{4} T^{4} )( 1 - 1246 T^{2} + p^{4} T^{4} ) \)
43$C_2$$\times$$C_2^2$ \( ( 1 - 14 T + p^{2} T^{2} )^{2}( 1 - 3502 T^{2} + p^{4} T^{4} ) \)
47$C_2$ \( ( 1 + p^{2} T^{2} )^{4} \)
53$C_2^2$ \( ( 1 + p^{4} T^{4} )^{2} \)
59$C_2$$\times$$C_2^2$ \( ( 1 - 82 T + p^{2} T^{2} )^{2}( 1 - 238 T^{2} + p^{4} T^{4} ) \)
61$C_4\times C_2$ \( 1 + p^{8} T^{8} \)
67$C_2^2$ \( ( 1 + 168 T + 14112 T^{2} + 168 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
71$C_4\times C_2$ \( 1 + p^{8} T^{8} \)
73$C_2^2$$\times$$C_2^2$ \( ( 1 + 9506 T^{2} + p^{4} T^{4} )( 1 + 48 T + 1152 T^{2} + 48 p^{2} T^{3} + p^{4} T^{4} ) \)
79$C_4\times C_2$ \( 1 + p^{8} T^{8} \)
83$C_2$$\times$$C_2^2$ \( ( 1 - 158 T + p^{2} T^{2} )^{2}( 1 + 11186 T^{2} + p^{4} T^{4} ) \)
89$C_2^2$$\times$$C_2^2$ \( ( 1 - 144 T + 10368 T^{2} - 144 p^{2} T^{3} + p^{4} T^{4} )( 1 + 144 T + 10368 T^{2} + 144 p^{2} T^{3} + p^{4} T^{4} ) \)
97$C_2$$\times$$C_2^2$ \( ( 1 - 94 T + p^{2} T^{2} )^{2}( 1 + 240 T + 28800 T^{2} + 240 p^{2} T^{3} + p^{4} T^{4} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.577818393296944042431351500232, −9.012293911230694027503275125947, −8.873923019086010266594309952647, −8.754025838858279168968362203563, −8.480130838900794845211974277751, −7.82827333059112851143619120401, −7.76079500438245568060487434296, −7.74595638277178403085855169706, −7.51970695530119147373301863062, −6.96602649718616442202683601754, −6.78753434747885517419431254722, −6.36830439734850330280549873593, −5.94459768317007640324851040212, −5.63606386168935680502083076707, −5.26224964581076400386554171282, −4.42070166315467217079051243674, −4.35677885857204447899535878392, −4.33215190713590144985705674940, −3.63235864568933165201782589634, −3.40950429531687631888185269321, −2.95081434397453112244995333998, −2.48271696374079102226764754692, −2.13947562892073897864002644124, −1.72417138947243909755814456860, −0.943491278847577971844287067744, 0.943491278847577971844287067744, 1.72417138947243909755814456860, 2.13947562892073897864002644124, 2.48271696374079102226764754692, 2.95081434397453112244995333998, 3.40950429531687631888185269321, 3.63235864568933165201782589634, 4.33215190713590144985705674940, 4.35677885857204447899535878392, 4.42070166315467217079051243674, 5.26224964581076400386554171282, 5.63606386168935680502083076707, 5.94459768317007640324851040212, 6.36830439734850330280549873593, 6.78753434747885517419431254722, 6.96602649718616442202683601754, 7.51970695530119147373301863062, 7.74595638277178403085855169706, 7.76079500438245568060487434296, 7.82827333059112851143619120401, 8.480130838900794845211974277751, 8.754025838858279168968362203563, 8.873923019086010266594309952647, 9.012293911230694027503275125947, 9.577818393296944042431351500232

Graph of the $Z$-function along the critical line