# Properties

 Label 8-1323e4-1.1-c1e4-0-2 Degree $8$ Conductor $3.064\times 10^{12}$ Sign $1$ Analytic cond. $12455.1$ Root an. cond. $3.25026$ Motivic weight $1$ Arithmetic yes Rational yes Primitive no Self-dual yes Analytic rank $0$

# Origins of factors

## Dirichlet series

 L(s)  = 1 − 2·4-s + 16·13-s − 3·16-s + 12·19-s − 14·25-s + 20·31-s − 4·37-s − 32·52-s + 8·61-s + 12·64-s + 40·73-s − 24·76-s − 16·79-s + 16·97-s + 28·100-s + 20·103-s − 12·109-s − 6·121-s − 40·124-s + 127-s + 131-s + 137-s + 139-s + 8·148-s + 149-s + 151-s + 157-s + ⋯
 L(s)  = 1 − 4-s + 4.43·13-s − 3/4·16-s + 2.75·19-s − 2.79·25-s + 3.59·31-s − 0.657·37-s − 4.43·52-s + 1.02·61-s + 3/2·64-s + 4.68·73-s − 2.75·76-s − 1.80·79-s + 1.62·97-s + 14/5·100-s + 1.97·103-s − 1.14·109-s − 0.545·121-s − 3.59·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.657·148-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{12} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{12} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}

## Invariants

 Degree: $$8$$ Conductor: $$3^{12} \cdot 7^{8}$$ Sign: $1$ Analytic conductor: $$12455.1$$ Root analytic conductor: $$3.25026$$ Motivic weight: $$1$$ Rational: yes Arithmetic: yes Character: induced by $\chi_{1323} (1, \cdot )$ Primitive: no Self-dual: yes Analytic rank: $$0$$ Selberg data: $$(8,\ 3^{12} \cdot 7^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )$$

## Particular Values

 $$L(1)$$ $$\approx$$ $$4.816428656$$ $$L(\frac12)$$ $$\approx$$ $$4.816428656$$ $$L(\frac{3}{2})$$ not available $$L(1)$$ not available

## Euler product

$$L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}$$
$p$$\Gal(F_p)$$F_p(T)$
bad3 $$1$$
7 $$1$$
good2$C_2^2 \wr C_2$ $$1 + p T^{2} + 7 T^{4} + p^{3} T^{6} + p^{4} T^{8}$$
5$C_2^2 \wr C_2$ $$1 + 14 T^{2} + 97 T^{4} + 14 p^{2} T^{6} + p^{4} T^{8}$$
11$C_2^2 \wr C_2$ $$1 + 6 T^{2} + 233 T^{4} + 6 p^{2} T^{6} + p^{4} T^{8}$$
13$D_{4}$ $$( 1 - 8 T + 34 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{2}$$
17$C_2^2 \wr C_2$ $$1 + 48 T^{2} + 1082 T^{4} + 48 p^{2} T^{6} + p^{4} T^{8}$$
19$D_{4}$ $$( 1 - 6 T + 45 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2}$$
23$C_2^2 \wr C_2$ $$1 + 2 T^{2} + 1057 T^{4} + 2 p^{2} T^{6} + p^{4} T^{8}$$
29$C_2^2 \wr C_2$ $$1 + 20 T^{2} + 1270 T^{4} + 20 p^{2} T^{6} + p^{4} T^{8}$$
31$D_{4}$ $$( 1 - 10 T + 55 T^{2} - 10 p T^{3} + p^{2} T^{4} )^{2}$$
37$D_{4}$ $$( 1 + 2 T + 57 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2}$$
41$C_2^2 \wr C_2$ $$1 + 138 T^{2} + 7961 T^{4} + 138 p^{2} T^{6} + p^{4} T^{8}$$
43$C_2^2$ $$( 1 + 36 T^{2} + p^{2} T^{4} )^{2}$$
47$C_2^2 \wr C_2$ $$1 - 56 T^{2} + 5130 T^{4} - 56 p^{2} T^{6} + p^{4} T^{8}$$
53$C_2^2 \wr C_2$ $$1 + 108 T^{2} + 5942 T^{4} + 108 p^{2} T^{6} + p^{4} T^{8}$$
59$C_2^2 \wr C_2$ $$1 + 224 T^{2} + 19498 T^{4} + 224 p^{2} T^{6} + p^{4} T^{8}$$
61$D_{4}$ $$( 1 - 4 T + 54 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2}$$
67$C_2^2$ $$( 1 + 102 T^{2} + p^{2} T^{4} )^{2}$$
71$C_2^2 \wr C_2$ $$1 - 10 T^{2} + 5305 T^{4} - 10 p^{2} T^{6} + p^{4} T^{8}$$
73$D_{4}$ $$( 1 - 20 T + 244 T^{2} - 20 p T^{3} + p^{2} T^{4} )^{2}$$
79$D_{4}$ $$( 1 + 8 T + 76 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{2}$$
83$C_2^2 \wr C_2$ $$1 + 116 T^{2} + 5590 T^{4} + 116 p^{2} T^{6} + p^{4} T^{8}$$
89$C_2^2 \wr C_2$ $$1 + 42 T^{2} - 8359 T^{4} + 42 p^{2} T^{6} + p^{4} T^{8}$$
97$D_{4}$ $$( 1 - 8 T + 178 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{2}$$
show less
$$L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}$$

## Imaginary part of the first few zeros on the critical line

−6.68630451777558793754329236746, −6.61710306976616621455701494829, −6.60246917122514352707098332572, −6.11252333019577611237154748251, −6.03261086903192966825208175934, −5.78878725162735550954208754453, −5.57005877073615517393790871555, −5.32211948054130676557195257473, −5.26374977711413510701342090043, −4.75967814185732876595708699491, −4.61966293064873693599803954730, −4.34228919780989842307551867763, −4.12855425516994439071979503820, −3.79403083013742057573715302133, −3.63160699092215927574436569516, −3.47935950519704869468560408985, −3.41103462561610339595769797872, −2.87584121943402312033224766960, −2.65513127308151700255219102590, −2.20475677507131938368984025300, −1.86063760019623894860488019417, −1.46860582479803359462865164825, −1.16384581348343585395474893801, −0.792466556965372655585308910725, −0.62841134942850118325255961102, 0.62841134942850118325255961102, 0.792466556965372655585308910725, 1.16384581348343585395474893801, 1.46860582479803359462865164825, 1.86063760019623894860488019417, 2.20475677507131938368984025300, 2.65513127308151700255219102590, 2.87584121943402312033224766960, 3.41103462561610339595769797872, 3.47935950519704869468560408985, 3.63160699092215927574436569516, 3.79403083013742057573715302133, 4.12855425516994439071979503820, 4.34228919780989842307551867763, 4.61966293064873693599803954730, 4.75967814185732876595708699491, 5.26374977711413510701342090043, 5.32211948054130676557195257473, 5.57005877073615517393790871555, 5.78878725162735550954208754453, 6.03261086903192966825208175934, 6.11252333019577611237154748251, 6.60246917122514352707098332572, 6.61710306976616621455701494829, 6.68630451777558793754329236746