Properties

Label 8-1305e4-1.1-c1e4-0-1
Degree $8$
Conductor $2.900\times 10^{12}$
Sign $1$
Analytic cond. $11790.9$
Root an. cond. $3.22807$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·4-s + 40·16-s − 10·25-s + 28·49-s − 160·64-s + 80·100-s − 4·109-s − 14·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 52·169-s + 173-s + 179-s + 181-s + 191-s + 193-s − 224·196-s + 197-s + 199-s + 211-s + ⋯
L(s)  = 1  − 4·4-s + 10·16-s − 2·25-s + 4·49-s − 20·64-s + 8·100-s − 0.383·109-s − 1.27·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 4·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s − 16·196-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{8} \cdot 5^{4} \cdot 29^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{8} \cdot 5^{4} \cdot 29^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(3^{8} \cdot 5^{4} \cdot 29^{4}\)
Sign: $1$
Analytic conductor: \(11790.9\)
Root analytic conductor: \(3.22807\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 3^{8} \cdot 5^{4} \cdot 29^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.3650173577\)
\(L(\frac12)\) \(\approx\) \(0.3650173577\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
5$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 + p T^{2} )^{2} \)
good2$C_2$ \( ( 1 + p T^{2} )^{4} \)
7$C_2$ \( ( 1 - p T^{2} )^{4} \)
11$C_2^2$ \( ( 1 + 7 T^{2} + p^{2} T^{4} )^{2} \)
13$C_2$ \( ( 1 - p T^{2} )^{4} \)
17$C_2$ \( ( 1 + p T^{2} )^{4} \)
19$C_2$ \( ( 1 - p T^{2} )^{4} \)
23$C_2^2$ \( ( 1 - 41 T^{2} + p^{2} T^{4} )^{2} \)
31$C_2$ \( ( 1 - p T^{2} )^{4} \)
37$C_2^2$ \( ( 1 - 71 T^{2} + p^{2} T^{4} )^{2} \)
41$C_2^2$ \( ( 1 - 53 T^{2} + p^{2} T^{4} )^{2} \)
43$C_2^2$ \( ( 1 - 59 T^{2} + p^{2} T^{4} )^{2} \)
47$C_2$ \( ( 1 + p T^{2} )^{4} \)
53$C_2^2$ \( ( 1 + 19 T^{2} + p^{2} T^{4} )^{2} \)
59$C_2$ \( ( 1 + p T^{2} )^{4} \)
61$C_2$ \( ( 1 - p T^{2} )^{4} \)
67$C_2$ \( ( 1 - p T^{2} )^{4} \)
71$C_2$ \( ( 1 + p T^{2} )^{4} \)
73$C_2^2$ \( ( 1 + T^{2} + p^{2} T^{4} )^{2} \)
79$C_2$ \( ( 1 - p T^{2} )^{4} \)
83$C_2^2$ \( ( 1 + 79 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 - 62 T^{2} + p^{2} T^{4} )^{2} \)
97$C_2^2$ \( ( 1 + 49 T^{2} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.89969363321014212174241808316, −6.72479145089049766712017799806, −6.16531467087960261605465615692, −6.12100844234200891893254203097, −5.89743988967450134656050730817, −5.65496163549387476363382516234, −5.38568888522453096885479601980, −5.31977653041580870695401398586, −5.22943269081314089635970392005, −4.83225155921523667657761638756, −4.50528740654116124079001807500, −4.37871389256142542574020829343, −4.12907271947267493859959729610, −3.99274686870874226041305619069, −3.93652489556129409685887195005, −3.52605629396906719909437971818, −3.30538821934600939207968873120, −3.06491727752146568228042806351, −2.66394786707359359663027293418, −2.25347376882813811470605930560, −1.82680416816571196489098261312, −1.43833832894140756409834202688, −0.895306534938409028171532575126, −0.76028464924005956211439837042, −0.22269172729142053465133409986, 0.22269172729142053465133409986, 0.76028464924005956211439837042, 0.895306534938409028171532575126, 1.43833832894140756409834202688, 1.82680416816571196489098261312, 2.25347376882813811470605930560, 2.66394786707359359663027293418, 3.06491727752146568228042806351, 3.30538821934600939207968873120, 3.52605629396906719909437971818, 3.93652489556129409685887195005, 3.99274686870874226041305619069, 4.12907271947267493859959729610, 4.37871389256142542574020829343, 4.50528740654116124079001807500, 4.83225155921523667657761638756, 5.22943269081314089635970392005, 5.31977653041580870695401398586, 5.38568888522453096885479601980, 5.65496163549387476363382516234, 5.89743988967450134656050730817, 6.12100844234200891893254203097, 6.16531467087960261605465615692, 6.72479145089049766712017799806, 6.89969363321014212174241808316

Graph of the $Z$-function along the critical line