Properties

Label 8-1305e4-1.1-c0e4-0-1
Degree $8$
Conductor $2.900\times 10^{12}$
Sign $1$
Analytic cond. $0.179916$
Root an. cond. $0.807019$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·4-s + 4·11-s + 16-s − 4·29-s + 8·44-s + 2·49-s − 2·64-s − 4·89-s − 4·101-s − 4·109-s − 8·116-s + 6·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 2·169-s + 173-s + 4·176-s + 179-s + 181-s + 191-s + ⋯
L(s)  = 1  + 2·4-s + 4·11-s + 16-s − 4·29-s + 8·44-s + 2·49-s − 2·64-s − 4·89-s − 4·101-s − 4·109-s − 8·116-s + 6·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 2·169-s + 173-s + 4·176-s + 179-s + 181-s + 191-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{8} \cdot 5^{4} \cdot 29^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{8} \cdot 5^{4} \cdot 29^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(3^{8} \cdot 5^{4} \cdot 29^{4}\)
Sign: $1$
Analytic conductor: \(0.179916\)
Root analytic conductor: \(0.807019\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 3^{8} \cdot 5^{4} \cdot 29^{4} ,\ ( \ : 0, 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(2.254548272\)
\(L(\frac12)\) \(\approx\) \(2.254548272\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
5$C_2^2$ \( 1 + T^{4} \)
29$C_1$ \( ( 1 + T )^{4} \)
good2$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
7$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
11$C_2$ \( ( 1 - T + T^{2} )^{4} \)
13$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
17$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
19$C_2^2$ \( ( 1 + T^{4} )^{2} \)
23$C_2$ \( ( 1 + T^{2} )^{4} \)
31$C_2^2$ \( ( 1 + T^{4} )^{2} \)
37$C_2^2$ \( ( 1 + T^{4} )^{2} \)
41$C_2$ \( ( 1 + T^{2} )^{4} \)
43$C_2$ \( ( 1 + T^{2} )^{4} \)
47$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
53$C_2^2$ \( ( 1 + T^{4} )^{2} \)
59$C_2^2$ \( ( 1 + T^{4} )^{2} \)
61$C_2^2$ \( ( 1 + T^{4} )^{2} \)
67$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
71$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
73$C_2$ \( ( 1 + T^{2} )^{4} \)
79$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
83$C_2$ \( ( 1 + T^{2} )^{4} \)
89$C_2$ \( ( 1 + T + T^{2} )^{4} \)
97$C_2^2$ \( ( 1 + T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.97521659562400289068037110914, −6.93685517473482952822409025129, −6.79702715156859495192709331649, −6.44196141677873941593080443324, −6.41102835994116180479947010341, −5.99960822400291924195681016217, −5.87035153941037343147387467410, −5.71871128636259064715408258652, −5.38250658370185532485174349822, −5.37591952760100189981128218137, −4.89157052261506185710334771109, −4.39497443868652757035883322767, −4.08686641423656999667181487190, −4.05344393099094602045311876221, −4.04157646832285740614025453381, −3.82123535619916242822078092884, −3.35522843904284125642139184055, −3.00698395384819701814263092080, −2.87274236070004107949456765827, −2.52174986913497857654678087032, −2.12252140003167944483305309268, −1.69598919815065488925671967601, −1.67038125642667276524652896145, −1.53299647145158683911279144529, −1.01035329716552294712814623760, 1.01035329716552294712814623760, 1.53299647145158683911279144529, 1.67038125642667276524652896145, 1.69598919815065488925671967601, 2.12252140003167944483305309268, 2.52174986913497857654678087032, 2.87274236070004107949456765827, 3.00698395384819701814263092080, 3.35522843904284125642139184055, 3.82123535619916242822078092884, 4.04157646832285740614025453381, 4.05344393099094602045311876221, 4.08686641423656999667181487190, 4.39497443868652757035883322767, 4.89157052261506185710334771109, 5.37591952760100189981128218137, 5.38250658370185532485174349822, 5.71871128636259064715408258652, 5.87035153941037343147387467410, 5.99960822400291924195681016217, 6.41102835994116180479947010341, 6.44196141677873941593080443324, 6.79702715156859495192709331649, 6.93685517473482952822409025129, 6.97521659562400289068037110914

Graph of the $Z$-function along the critical line