Properties

Label 8-1300e4-1.1-c0e4-0-1
Degree $8$
Conductor $2.856\times 10^{12}$
Sign $1$
Analytic cond. $0.177174$
Root an. cond. $0.805471$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 5-s + 9-s − 10-s − 13-s + 18-s − 26-s + 2·29-s − 32-s − 3·37-s − 45-s + 4·49-s − 5·53-s + 2·58-s + 2·61-s − 64-s + 65-s + 2·73-s − 3·74-s − 5·89-s − 90-s − 2·97-s + 4·98-s − 2·101-s − 5·106-s − 5·113-s − 117-s + ⋯
L(s)  = 1  + 2-s − 5-s + 9-s − 10-s − 13-s + 18-s − 26-s + 2·29-s − 32-s − 3·37-s − 45-s + 4·49-s − 5·53-s + 2·58-s + 2·61-s − 64-s + 65-s + 2·73-s − 3·74-s − 5·89-s − 90-s − 2·97-s + 4·98-s − 2·101-s − 5·106-s − 5·113-s − 117-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 5^{8} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 5^{8} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{8} \cdot 5^{8} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(0.177174\)
Root analytic conductor: \(0.805471\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{8} \cdot 5^{8} \cdot 13^{4} ,\ ( \ : 0, 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.026128989\)
\(L(\frac12)\) \(\approx\) \(1.026128989\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_4$ \( 1 - T + T^{2} - T^{3} + T^{4} \)
5$C_4$ \( 1 + T + T^{2} + T^{3} + T^{4} \)
13$C_4$ \( 1 + T + T^{2} + T^{3} + T^{4} \)
good3$C_4\times C_2$ \( 1 - T^{2} + T^{4} - T^{6} + T^{8} \)
7$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
11$C_4\times C_2$ \( 1 - T^{2} + T^{4} - T^{6} + T^{8} \)
17$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
19$C_4\times C_2$ \( 1 - T^{2} + T^{4} - T^{6} + T^{8} \)
23$C_4\times C_2$ \( 1 - T^{2} + T^{4} - T^{6} + T^{8} \)
29$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2} \)
31$C_4\times C_2$ \( 1 - T^{2} + T^{4} - T^{6} + T^{8} \)
37$C_1$$\times$$C_4$ \( ( 1 + T )^{4}( 1 - T + T^{2} - T^{3} + T^{4} ) \)
41$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
43$C_2$ \( ( 1 + T^{2} )^{4} \)
47$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
53$C_1$$\times$$C_4$ \( ( 1 + T )^{4}( 1 + T + T^{2} + T^{3} + T^{4} ) \)
59$C_4\times C_2$ \( 1 - T^{2} + T^{4} - T^{6} + T^{8} \)
61$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2} \)
67$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
71$C_4\times C_2$ \( 1 - T^{2} + T^{4} - T^{6} + T^{8} \)
73$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2} \)
79$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
83$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
89$C_1$$\times$$C_4$ \( ( 1 + T )^{4}( 1 + T + T^{2} + T^{3} + T^{4} ) \)
97$C_4$ \( ( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.11771675487351229396692243274, −6.76160533436640586893668077705, −6.67848716506550657474779882894, −6.60507829949639870985158534854, −6.45388441945623399627814550131, −5.84699987285958321368995002501, −5.48338217199191172364336052898, −5.45136365759392557317200524535, −5.43817507661809815025805033895, −5.04737195388509812474018239632, −4.80364133648008745912642108083, −4.63121880377543023509445274656, −4.37113472937462477961690003686, −4.02274640985583990502053933316, −4.00279435746061860784135134892, −3.84741738045711040326346702655, −3.62417435187499690843348748564, −3.09617288005201587909402820999, −2.81693272722253792575579381372, −2.62239382316628216093577842622, −2.58787711412689116049285053422, −1.72492685825827688896841110592, −1.56100148856249326080737018526, −1.50825976844226755048726003384, −0.56836032398823966226236385381, 0.56836032398823966226236385381, 1.50825976844226755048726003384, 1.56100148856249326080737018526, 1.72492685825827688896841110592, 2.58787711412689116049285053422, 2.62239382316628216093577842622, 2.81693272722253792575579381372, 3.09617288005201587909402820999, 3.62417435187499690843348748564, 3.84741738045711040326346702655, 4.00279435746061860784135134892, 4.02274640985583990502053933316, 4.37113472937462477961690003686, 4.63121880377543023509445274656, 4.80364133648008745912642108083, 5.04737195388509812474018239632, 5.43817507661809815025805033895, 5.45136365759392557317200524535, 5.48338217199191172364336052898, 5.84699987285958321368995002501, 6.45388441945623399627814550131, 6.60507829949639870985158534854, 6.67848716506550657474779882894, 6.76160533436640586893668077705, 7.11771675487351229396692243274

Graph of the $Z$-function along the critical line