Properties

Label 8-12e12-1.1-c2e4-0-12
Degree $8$
Conductor $8.916\times 10^{12}$
Sign $1$
Analytic cond. $4.91490\times 10^{6}$
Root an. cond. $6.86182$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 24·11-s + 28·25-s + 146·49-s − 72·59-s + 100·73-s − 480·83-s − 340·97-s + 600·107-s − 124·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 622·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + ⋯
L(s)  = 1  − 2.18·11-s + 1.11·25-s + 2.97·49-s − 1.22·59-s + 1.36·73-s − 5.78·83-s − 3.50·97-s + 5.60·107-s − 1.02·121-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + 0.00613·163-s + 0.00598·167-s + 3.68·169-s + 0.00578·173-s + 0.00558·179-s + 0.00552·181-s + 0.00523·191-s + 0.00518·193-s + 0.00507·197-s + 0.00502·199-s + 0.00473·211-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 3^{12}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 3^{12}\right)^{s/2} \, \Gamma_{\C}(s+1)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{24} \cdot 3^{12}\)
Sign: $1$
Analytic conductor: \(4.91490\times 10^{6}\)
Root analytic conductor: \(6.86182\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: induced by $\chi_{1728} (1, \cdot )$
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{24} \cdot 3^{12} ,\ ( \ : 1, 1, 1, 1 ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(2.460651598\)
\(L(\frac12)\) \(\approx\) \(2.460651598\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$C_2$ \( ( 1 - 8 T + p^{2} T^{2} )^{2}( 1 + 8 T + p^{2} T^{2} )^{2} \)
7$C_2^2$ \( ( 1 - 73 T^{2} + p^{4} T^{4} )^{2} \)
11$C_2$ \( ( 1 + 6 T + p^{2} T^{2} )^{4} \)
13$C_2^2$ \( ( 1 - 311 T^{2} + p^{4} T^{4} )^{2} \)
17$C_2^2$ \( ( 1 - 394 T^{2} + p^{4} T^{4} )^{2} \)
19$C_2^2$ \( ( 1 + 47 T^{2} + p^{4} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 - 86 T^{2} + p^{4} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 - 386 T^{2} + p^{4} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 - 1246 T^{2} + p^{4} T^{4} )^{2} \)
37$C_2^2$ \( ( 1 - 2063 T^{2} + p^{4} T^{4} )^{2} \)
41$C_2$ \( ( 1 + p^{2} T^{2} )^{4} \)
43$C_2^2$ \( ( 1 + 3266 T^{2} + p^{4} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 - 3446 T^{2} + p^{4} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 - 2018 T^{2} + p^{4} T^{4} )^{2} \)
59$C_2$ \( ( 1 + 18 T + p^{2} T^{2} )^{4} \)
61$C_2^2$ \( ( 1 - 1367 T^{2} + p^{4} T^{4} )^{2} \)
67$C_2^2$ \( ( 1 + 2903 T^{2} + p^{4} T^{4} )^{2} \)
71$C_1$$\times$$C_1$ \( ( 1 - p T )^{4}( 1 + p T )^{4} \)
73$C_2$ \( ( 1 - 25 T + p^{2} T^{2} )^{4} \)
79$C_2^2$ \( ( 1 - 11521 T^{2} + p^{4} T^{4} )^{2} \)
83$C_2$ \( ( 1 + 120 T + p^{2} T^{2} )^{4} \)
89$C_2^2$ \( ( 1 - 8458 T^{2} + p^{4} T^{4} )^{2} \)
97$C_2$ \( ( 1 + 85 T + p^{2} T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.28042587178737463444690446627, −6.21961099049867555328505585935, −6.00053446389298124461394930974, −5.71446948665206574661276680631, −5.54458868126134222094911766525, −5.45057809320397448019477638292, −5.22623545635728580617380448273, −4.85877303075578878125965246808, −4.78972685707122645381240121856, −4.44488614821087089234793691291, −4.33949073705684135655385436778, −3.99925808550952381398336226064, −3.88681997272576016016695975114, −3.38190525024980908477156207525, −3.23455318406256749742760258440, −2.92957461216666183253174228215, −2.70826107771489295045035044382, −2.64981101782922160338562815114, −2.14702583419387544047571454795, −2.13488086233835796885912202220, −1.57975058681682120997917239735, −1.28730473824218973490140394386, −0.960563459503952240440666354666, −0.44802356264953959867370377858, −0.29652002863867686158134101331, 0.29652002863867686158134101331, 0.44802356264953959867370377858, 0.960563459503952240440666354666, 1.28730473824218973490140394386, 1.57975058681682120997917239735, 2.13488086233835796885912202220, 2.14702583419387544047571454795, 2.64981101782922160338562815114, 2.70826107771489295045035044382, 2.92957461216666183253174228215, 3.23455318406256749742760258440, 3.38190525024980908477156207525, 3.88681997272576016016695975114, 3.99925808550952381398336226064, 4.33949073705684135655385436778, 4.44488614821087089234793691291, 4.78972685707122645381240121856, 4.85877303075578878125965246808, 5.22623545635728580617380448273, 5.45057809320397448019477638292, 5.54458868126134222094911766525, 5.71446948665206574661276680631, 6.00053446389298124461394930974, 6.21961099049867555328505585935, 6.28042587178737463444690446627

Graph of the $Z$-function along the critical line