Properties

Label 8-12e12-1.1-c1e4-0-5
Degree $8$
Conductor $8.916\times 10^{12}$
Sign $1$
Analytic cond. $36247.9$
Root an. cond. $3.71458$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 20·13-s + 8·19-s + 4·31-s + 16·37-s − 4·43-s + 10·49-s − 8·61-s + 20·67-s − 56·79-s + 20·97-s − 32·109-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 200·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + ⋯
L(s)  = 1  − 5.54·13-s + 1.83·19-s + 0.718·31-s + 2.63·37-s − 0.609·43-s + 10/7·49-s − 1.02·61-s + 2.44·67-s − 6.30·79-s + 2.03·97-s − 3.06·109-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 15.3·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 3^{12}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 3^{12}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{24} \cdot 3^{12}\)
Sign: $1$
Analytic conductor: \(36247.9\)
Root analytic conductor: \(3.71458\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{24} \cdot 3^{12} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.7817187526\)
\(L(\frac12)\) \(\approx\) \(0.7817187526\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$C_2^3$ \( 1 + 31 T^{4} + p^{4} T^{8} \)
7$C_2^2$ \( ( 1 - 5 T^{2} + p^{2} T^{4} )^{2} \)
11$C_2^3$ \( 1 + 199 T^{4} + p^{4} T^{8} \)
13$C_2$ \( ( 1 + 4 T + p T^{2} )^{2}( 1 + 6 T + p T^{2} )^{2} \)
17$C_2^2$ \( ( 1 + 16 T^{2} + p^{2} T^{4} )^{2} \)
19$C_2^2$ \( ( 1 - 4 T + 8 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 - 14 T^{2} + p^{2} T^{4} )^{2} \)
29$C_2^3$ \( 1 - 1646 T^{4} + p^{4} T^{8} \)
31$C_2$ \( ( 1 - T + p T^{2} )^{4} \)
37$C_2^2$ \( ( 1 - 8 T + 32 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{2} \)
41$C_2^2$ \( ( 1 - 74 T^{2} + p^{2} T^{4} )^{2} \)
43$C_2^2$ \( ( 1 + 2 T + 2 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 + 76 T^{2} + p^{2} T^{4} )^{2} \)
53$C_2^3$ \( 1 - 5393 T^{4} + p^{4} T^{8} \)
59$C_2^3$ \( 1 - 6638 T^{4} + p^{4} T^{8} \)
61$C_2^2$ \( ( 1 + 4 T + 8 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
67$C_2^2$ \( ( 1 - 10 T + 50 T^{2} - 10 p T^{3} + p^{2} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 - 140 T^{2} + p^{2} T^{4} )^{2} \)
73$C_2^2$ \( ( 1 - 137 T^{2} + p^{2} T^{4} )^{2} \)
79$C_2$ \( ( 1 + 14 T + p T^{2} )^{4} \)
83$C_2^3$ \( 1 - 89 T^{4} + p^{4} T^{8} \)
89$C_2^2$ \( ( 1 + 64 T^{2} + p^{2} T^{4} )^{2} \)
97$C_2$ \( ( 1 - 5 T + p T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.74179435133588302140194969424, −6.69603849618479236523531550726, −6.14944398037601711164614027947, −5.91553255297147763590500581644, −5.70917055413950223950606089596, −5.45656438948862577477252683405, −5.32341144895154061307671740920, −5.14736307465386635339373109547, −4.83182343947432223662701271575, −4.81059457379131404374897514560, −4.43835464657337924159905448057, −4.35973355770638748799884862914, −3.99637628008372845123984482313, −3.98814407753877550816168576346, −3.27520722159028795854353891662, −3.09492556809901487266284473528, −2.86969338413894397272762518348, −2.61691741258225594773256315313, −2.58812453917114216139557546087, −2.19464896853152197197570421435, −2.13560956126129258270967446158, −1.35927404504935066710552799631, −1.29080031344632440533615484536, −0.62148003172646810817459637459, −0.21408687571039793317772755519, 0.21408687571039793317772755519, 0.62148003172646810817459637459, 1.29080031344632440533615484536, 1.35927404504935066710552799631, 2.13560956126129258270967446158, 2.19464896853152197197570421435, 2.58812453917114216139557546087, 2.61691741258225594773256315313, 2.86969338413894397272762518348, 3.09492556809901487266284473528, 3.27520722159028795854353891662, 3.98814407753877550816168576346, 3.99637628008372845123984482313, 4.35973355770638748799884862914, 4.43835464657337924159905448057, 4.81059457379131404374897514560, 4.83182343947432223662701271575, 5.14736307465386635339373109547, 5.32341144895154061307671740920, 5.45656438948862577477252683405, 5.70917055413950223950606089596, 5.91553255297147763590500581644, 6.14944398037601711164614027947, 6.69603849618479236523531550726, 6.74179435133588302140194969424

Graph of the $Z$-function along the critical line