Properties

Label 8-12e12-1.1-c1e4-0-15
Degree $8$
Conductor $8.916\times 10^{12}$
Sign $1$
Analytic cond. $36247.9$
Root an. cond. $3.71458$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 12·5-s + 12·13-s + 12·17-s + 74·25-s − 24·29-s + 6·41-s + 14·49-s + 24·61-s − 144·65-s − 28·73-s − 144·85-s + 24·89-s − 2·97-s − 12·101-s + 12·113-s − 13·121-s − 312·125-s + 127-s + 131-s + 137-s + 139-s + 288·145-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯
L(s)  = 1  − 5.36·5-s + 3.32·13-s + 2.91·17-s + 74/5·25-s − 4.45·29-s + 0.937·41-s + 2·49-s + 3.07·61-s − 17.8·65-s − 3.27·73-s − 15.6·85-s + 2.54·89-s − 0.203·97-s − 1.19·101-s + 1.12·113-s − 1.18·121-s − 27.9·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 23.9·145-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 3^{12}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 3^{12}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{24} \cdot 3^{12}\)
Sign: $1$
Analytic conductor: \(36247.9\)
Root analytic conductor: \(3.71458\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{24} \cdot 3^{12} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(1.193450728\)
\(L(\frac12)\) \(\approx\) \(1.193450728\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$C_2^2$ \( ( 1 + 6 T + 17 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
7$C_2^2$ \( ( 1 - p T^{2} + p^{2} T^{4} )^{2} \)
11$C_2^3$ \( 1 + 13 T^{2} + 48 T^{4} + 13 p^{2} T^{6} + p^{4} T^{8} \)
13$C_2^2$ \( ( 1 - 6 T + 25 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2} \)
17$C_2$ \( ( 1 - 3 T + p T^{2} )^{4} \)
19$C_2^2$ \( ( 1 + 11 T^{2} + p^{2} T^{4} )^{2} \)
23$C_2^3$ \( 1 - 34 T^{2} + 627 T^{4} - 34 p^{2} T^{6} + p^{4} T^{8} \)
29$C_2^2$ \( ( 1 + 12 T + 77 T^{2} + 12 p T^{3} + p^{2} T^{4} )^{2} \)
31$C_2^3$ \( 1 - 14 T^{2} - 765 T^{4} - 14 p^{2} T^{6} + p^{4} T^{8} \)
37$C_2^2$ \( ( 1 + 34 T^{2} + p^{2} T^{4} )^{2} \)
41$C_2^2$ \( ( 1 - 3 T - 32 T^{2} - 3 p T^{3} + p^{2} T^{4} )^{2} \)
43$C_2^2$$\times$$C_2^2$ \( ( 1 - 22 T^{2} + p^{2} T^{4} )( 1 + 83 T^{2} + p^{2} T^{4} ) \)
47$C_2^3$ \( 1 - 82 T^{2} + 4515 T^{4} - 82 p^{2} T^{6} + p^{4} T^{8} \)
53$C_2^2$ \( ( 1 + 86 T^{2} + p^{2} T^{4} )^{2} \)
59$C_2^3$ \( 1 + 37 T^{2} - 2112 T^{4} + 37 p^{2} T^{6} + p^{4} T^{8} \)
61$C_2$ \( ( 1 - 13 T + p T^{2} )^{2}( 1 + T + p T^{2} )^{2} \)
67$C_2^2$$\times$$C_2^2$ \( ( 1 - 13 T^{2} + p^{2} T^{4} )( 1 + 122 T^{2} + p^{2} T^{4} ) \)
71$C_2^2$ \( ( 1 + 130 T^{2} + p^{2} T^{4} )^{2} \)
73$C_2$ \( ( 1 + 7 T + p T^{2} )^{4} \)
79$C_2^2$$\times$$C_2^2$ \( ( 1 + 11 T^{2} + p^{2} T^{4} )( 1 + 131 T^{2} + p^{2} T^{4} ) \)
83$C_2^3$ \( 1 + 22 T^{2} - 6405 T^{4} + 22 p^{2} T^{6} + p^{4} T^{8} \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )^{4} \)
97$C_2^2$ \( ( 1 + T - 96 T^{2} + p T^{3} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.88486525923135144294000271077, −6.37508568172537327865282184951, −6.27382922009887181472077184050, −5.85691140729726789168465394611, −5.75801459266505386292307701985, −5.67865060118510864468198070801, −5.30105525502554537794950382137, −5.13609737631337688428909016714, −4.86541013581821821110254887207, −4.31248681626065609538555054311, −4.24968357373400134267176830141, −4.00686884428208395189625779842, −3.83618896922361921164306969380, −3.82124569629653266151060229259, −3.67672287093841869546960577420, −3.43642642159275953340810940207, −3.29458937088407859514302507468, −2.92463521199666841935403540814, −2.81469080456095380321609080984, −2.07831428033174111454524240100, −1.62450947776392018348328545002, −1.37533795947181610441442893151, −0.843622059593794011865724141001, −0.65728010947734261886232813411, −0.38829608182196922927670084808, 0.38829608182196922927670084808, 0.65728010947734261886232813411, 0.843622059593794011865724141001, 1.37533795947181610441442893151, 1.62450947776392018348328545002, 2.07831428033174111454524240100, 2.81469080456095380321609080984, 2.92463521199666841935403540814, 3.29458937088407859514302507468, 3.43642642159275953340810940207, 3.67672287093841869546960577420, 3.82124569629653266151060229259, 3.83618896922361921164306969380, 4.00686884428208395189625779842, 4.24968357373400134267176830141, 4.31248681626065609538555054311, 4.86541013581821821110254887207, 5.13609737631337688428909016714, 5.30105525502554537794950382137, 5.67865060118510864468198070801, 5.75801459266505386292307701985, 5.85691140729726789168465394611, 6.27382922009887181472077184050, 6.37508568172537327865282184951, 6.88486525923135144294000271077

Graph of the $Z$-function along the critical line