| L(s) = 1 | + 2·25-s + 6·41-s + 2·49-s − 4·73-s − 2·97-s − 121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 2·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + ⋯ |
| L(s) = 1 | + 2·25-s + 6·41-s + 2·49-s − 4·73-s − 2·97-s − 121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 2·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 3^{12}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 3^{12}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.404148109\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.404148109\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
|---|
| bad | 2 | | \( 1 \) |
| 3 | | \( 1 \) |
| good | 5 | $C_2^2$ | \( ( 1 - T^{2} + T^{4} )^{2} \) |
| 7 | $C_2^2$ | \( ( 1 - T^{2} + T^{4} )^{2} \) |
| 11 | $C_2$$\times$$C_2^2$ | \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \) |
| 13 | $C_2$ | \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \) |
| 17 | $C_2$ | \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \) |
| 19 | $C_2^2$ | \( ( 1 - T^{2} + T^{4} )^{2} \) |
| 23 | $C_2$ | \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \) |
| 29 | $C_2^2$ | \( ( 1 - T^{2} + T^{4} )^{2} \) |
| 31 | $C_2^2$ | \( ( 1 - T^{2} + T^{4} )^{2} \) |
| 37 | $C_1$$\times$$C_1$ | \( ( 1 - T )^{4}( 1 + T )^{4} \) |
| 41 | $C_1$$\times$$C_2$ | \( ( 1 - T )^{4}( 1 - T + T^{2} )^{2} \) |
| 43 | $C_2$$\times$$C_2^2$ | \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \) |
| 47 | $C_2$ | \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \) |
| 53 | $C_2$ | \( ( 1 + T^{2} )^{4} \) |
| 59 | $C_2$$\times$$C_2^2$ | \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \) |
| 61 | $C_2$ | \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \) |
| 67 | $C_2$$\times$$C_2^2$ | \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \) |
| 71 | $C_1$$\times$$C_1$ | \( ( 1 - T )^{4}( 1 + T )^{4} \) |
| 73 | $C_2$ | \( ( 1 + T + T^{2} )^{4} \) |
| 79 | $C_2^2$ | \( ( 1 - T^{2} + T^{4} )^{2} \) |
| 83 | $C_2^2$ | \( ( 1 - T^{2} + T^{4} )^{2} \) |
| 89 | $C_1$$\times$$C_1$ | \( ( 1 - T )^{4}( 1 + T )^{4} \) |
| 97 | $C_1$$\times$$C_2$ | \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \) |
| show more | | |
| show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−6.94726852136030717653486108241, −6.55972020214753527237955491411, −6.37993157883344568757058476937, −6.21040649592273343574282564953, −6.03248201438562069025797984885, −5.68819124423706306263499621154, −5.58804171115562209539678773613, −5.38548376986792866028673814145, −5.33414598472279731136179283812, −4.65018812240791955363432122956, −4.60331481726555117664409483617, −4.51249009048629713882919057816, −4.32185183457623962873102540737, −3.95101750871998102850184635250, −3.74238518414248299572465887110, −3.62340435150570997259839553781, −3.17077711068374732011850422639, −2.62225438757791549003331827602, −2.61756118153172588546874078105, −2.57931280896920557197045451268, −2.52140890925723676166638156250, −1.66403554509954787578173124639, −1.41865516638074689798275351435, −1.08263230468492423744135954629, −0.78312763341026005372339263250,
0.78312763341026005372339263250, 1.08263230468492423744135954629, 1.41865516638074689798275351435, 1.66403554509954787578173124639, 2.52140890925723676166638156250, 2.57931280896920557197045451268, 2.61756118153172588546874078105, 2.62225438757791549003331827602, 3.17077711068374732011850422639, 3.62340435150570997259839553781, 3.74238518414248299572465887110, 3.95101750871998102850184635250, 4.32185183457623962873102540737, 4.51249009048629713882919057816, 4.60331481726555117664409483617, 4.65018812240791955363432122956, 5.33414598472279731136179283812, 5.38548376986792866028673814145, 5.58804171115562209539678773613, 5.68819124423706306263499621154, 6.03248201438562069025797984885, 6.21040649592273343574282564953, 6.37993157883344568757058476937, 6.55972020214753527237955491411, 6.94726852136030717653486108241