Properties

Label 8-12e12-1.1-c0e4-0-4
Degree $8$
Conductor $8.916\times 10^{12}$
Sign $1$
Analytic cond. $0.553099$
Root an. cond. $0.928646$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·25-s + 6·41-s + 2·49-s − 4·73-s − 2·97-s − 121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 2·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + ⋯
L(s)  = 1  + 2·25-s + 6·41-s + 2·49-s − 4·73-s − 2·97-s − 121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 2·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 3^{12}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 3^{12}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{24} \cdot 3^{12}\)
Sign: $1$
Analytic conductor: \(0.553099\)
Root analytic conductor: \(0.928646\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{24} \cdot 3^{12} ,\ ( \ : 0, 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.404148109\)
\(L(\frac12)\) \(\approx\) \(1.404148109\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
7$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
11$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
13$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
17$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
19$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
23$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
29$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
31$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
37$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
41$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 - T + T^{2} )^{2} \)
43$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
47$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
53$C_2$ \( ( 1 + T^{2} )^{4} \)
59$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
61$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
67$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
71$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
73$C_2$ \( ( 1 + T + T^{2} )^{4} \)
79$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
83$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
89$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
97$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.94726852136030717653486108241, −6.55972020214753527237955491411, −6.37993157883344568757058476937, −6.21040649592273343574282564953, −6.03248201438562069025797984885, −5.68819124423706306263499621154, −5.58804171115562209539678773613, −5.38548376986792866028673814145, −5.33414598472279731136179283812, −4.65018812240791955363432122956, −4.60331481726555117664409483617, −4.51249009048629713882919057816, −4.32185183457623962873102540737, −3.95101750871998102850184635250, −3.74238518414248299572465887110, −3.62340435150570997259839553781, −3.17077711068374732011850422639, −2.62225438757791549003331827602, −2.61756118153172588546874078105, −2.57931280896920557197045451268, −2.52140890925723676166638156250, −1.66403554509954787578173124639, −1.41865516638074689798275351435, −1.08263230468492423744135954629, −0.78312763341026005372339263250, 0.78312763341026005372339263250, 1.08263230468492423744135954629, 1.41865516638074689798275351435, 1.66403554509954787578173124639, 2.52140890925723676166638156250, 2.57931280896920557197045451268, 2.61756118153172588546874078105, 2.62225438757791549003331827602, 3.17077711068374732011850422639, 3.62340435150570997259839553781, 3.74238518414248299572465887110, 3.95101750871998102850184635250, 4.32185183457623962873102540737, 4.51249009048629713882919057816, 4.60331481726555117664409483617, 4.65018812240791955363432122956, 5.33414598472279731136179283812, 5.38548376986792866028673814145, 5.58804171115562209539678773613, 5.68819124423706306263499621154, 6.03248201438562069025797984885, 6.21040649592273343574282564953, 6.37993157883344568757058476937, 6.55972020214753527237955491411, 6.94726852136030717653486108241

Graph of the $Z$-function along the critical line