Properties

Label 8-1280e4-1.1-c1e4-0-3
Degree $8$
Conductor $2.684\times 10^{12}$
Sign $1$
Analytic cond. $10913.1$
Root an. cond. $3.19700$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·5-s − 4·13-s + 4·17-s + 38·25-s − 16·29-s − 20·37-s − 8·41-s − 28·53-s − 32·65-s + 28·73-s + 18·81-s + 32·85-s − 28·97-s − 48·109-s + 36·113-s − 20·121-s + 136·125-s + 127-s + 131-s + 137-s + 139-s − 128·145-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯
L(s)  = 1  + 3.57·5-s − 1.10·13-s + 0.970·17-s + 38/5·25-s − 2.97·29-s − 3.28·37-s − 1.24·41-s − 3.84·53-s − 3.96·65-s + 3.27·73-s + 2·81-s + 3.47·85-s − 2.84·97-s − 4.59·109-s + 3.38·113-s − 1.81·121-s + 12.1·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 10.6·145-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{32} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{32} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{32} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(10913.1\)
Root analytic conductor: \(3.19700\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{32} \cdot 5^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(2.460927437\)
\(L(\frac12)\) \(\approx\) \(2.460927437\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
good3$C_2$$\times$$C_2$ \( ( 1 - p T^{2} )^{2}( 1 + p T^{2} )^{2} \)
7$C_2^3$ \( 1 - 34 T^{4} + p^{4} T^{8} \)
11$C_2^2$ \( ( 1 + 10 T^{2} + p^{2} T^{4} )^{2} \)
13$C_2$ \( ( 1 - 4 T + p T^{2} )^{2}( 1 + 6 T + p T^{2} )^{2} \)
17$C_2^2$ \( ( 1 - 2 T + 2 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
19$C_2^2$ \( ( 1 + 10 T^{2} + p^{2} T^{4} )^{2} \)
23$C_2^3$ \( 1 + 542 T^{4} + p^{4} T^{8} \)
29$C_2$ \( ( 1 + 4 T + p T^{2} )^{4} \)
31$C_2^2$ \( ( 1 - 50 T^{2} + p^{2} T^{4} )^{2} \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )^{2}( 1 + 12 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 + 2 T + p T^{2} )^{4} \)
43$C_2^3$ \( 1 + 2702 T^{4} + p^{4} T^{8} \)
47$C_2^3$ \( 1 + 3326 T^{4} + p^{4} T^{8} \)
53$C_2^2$ \( ( 1 + 14 T + 98 T^{2} + 14 p T^{3} + p^{2} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 - 70 T^{2} + p^{2} T^{4} )^{2} \)
61$C_2^2$ \( ( 1 - 86 T^{2} + p^{2} T^{4} )^{2} \)
67$C_2^3$ \( 1 - 2578 T^{4} + p^{4} T^{8} \)
71$C_2^2$ \( ( 1 - 34 T^{2} + p^{2} T^{4} )^{2} \)
73$C_2^2$ \( ( 1 - 14 T + 98 T^{2} - 14 p T^{3} + p^{2} T^{4} )^{2} \)
79$C_2$ \( ( 1 + p T^{2} )^{4} \)
83$C_2^3$ \( 1 + 2606 T^{4} + p^{4} T^{8} \)
89$C_2^2$ \( ( 1 - 114 T^{2} + p^{2} T^{4} )^{2} \)
97$C_2^2$ \( ( 1 + 14 T + 98 T^{2} + 14 p T^{3} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.70447746767751334270346422246, −6.56092404051223673078947372650, −6.55066560635412489296890055329, −6.36958317014230045583027012553, −5.90778790918733634070926631841, −5.77233802754215129801695055420, −5.48973860372372011744900298779, −5.36384834673605009816578433895, −5.18792158427783697959793701449, −5.16915417877838436444398136043, −4.82683924462730180611968558361, −4.67693418926345662381358637912, −4.21059687140627401186053286543, −3.67030678293651480734874533900, −3.65396983861386526050381774564, −3.33255254272453614835478172189, −3.15169424762984126071456811197, −2.69345042220394502671205957342, −2.42854529908805877705980196381, −2.24096494037619119545903925712, −1.82968493364292697137694916842, −1.75791555210869630123897030211, −1.39638625675540828333485341571, −1.28010530310604080380166095018, −0.25121060942101382308634355860, 0.25121060942101382308634355860, 1.28010530310604080380166095018, 1.39638625675540828333485341571, 1.75791555210869630123897030211, 1.82968493364292697137694916842, 2.24096494037619119545903925712, 2.42854529908805877705980196381, 2.69345042220394502671205957342, 3.15169424762984126071456811197, 3.33255254272453614835478172189, 3.65396983861386526050381774564, 3.67030678293651480734874533900, 4.21059687140627401186053286543, 4.67693418926345662381358637912, 4.82683924462730180611968558361, 5.16915417877838436444398136043, 5.18792158427783697959793701449, 5.36384834673605009816578433895, 5.48973860372372011744900298779, 5.77233802754215129801695055420, 5.90778790918733634070926631841, 6.36958317014230045583027012553, 6.55066560635412489296890055329, 6.56092404051223673078947372650, 6.70447746767751334270346422246

Graph of the $Z$-function along the critical line