Properties

Label 8-126e4-1.1-c2e4-0-7
Degree $8$
Conductor $252047376$
Sign $1$
Analytic cond. $138.938$
Root an. cond. $1.85290$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·4-s + 26·7-s + 60·13-s + 26·19-s − 48·25-s + 52·28-s − 6·31-s − 34·37-s − 340·43-s + 409·49-s + 120·52-s + 144·61-s − 8·64-s − 86·67-s + 190·73-s + 52·76-s − 138·79-s + 1.56e3·91-s + 64·97-s − 96·100-s + 122·103-s + 130·109-s − 192·121-s − 12·124-s + 127-s + 131-s + 676·133-s + ⋯
L(s)  = 1  + 1/2·4-s + 26/7·7-s + 4.61·13-s + 1.36·19-s − 1.91·25-s + 13/7·28-s − 0.193·31-s − 0.918·37-s − 7.90·43-s + 8.34·49-s + 2.30·52-s + 2.36·61-s − 1/8·64-s − 1.28·67-s + 2.60·73-s + 0.684·76-s − 1.74·79-s + 17.1·91-s + 0.659·97-s − 0.959·100-s + 1.18·103-s + 1.19·109-s − 1.58·121-s − 0.0967·124-s + 0.00787·127-s + 0.00763·131-s + 5.08·133-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 3^{8} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(138.938\)
Root analytic conductor: \(1.85290\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 3^{8} \cdot 7^{4} ,\ ( \ : 1, 1, 1, 1 ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(5.990667707\)
\(L(\frac12)\) \(\approx\) \(5.990667707\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
3 \( 1 \)
7$C_2$ \( ( 1 - 13 T + p^{2} T^{2} )^{2} \)
good5$C_2^3$ \( 1 + 48 T^{2} + 1679 T^{4} + 48 p^{4} T^{6} + p^{8} T^{8} \)
11$C_2^3$ \( 1 + 192 T^{2} + 22223 T^{4} + 192 p^{4} T^{6} + p^{8} T^{8} \)
13$C_2$ \( ( 1 - 15 T + p^{2} T^{2} )^{4} \)
17$C_2^3$ \( 1 + 450 T^{2} + 118979 T^{4} + 450 p^{4} T^{6} + p^{8} T^{8} \)
19$C_2^2$ \( ( 1 - 13 T - 192 T^{2} - 13 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
23$C_2^3$ \( 1 + 546 T^{2} + 18275 T^{4} + 546 p^{4} T^{6} + p^{8} T^{8} \)
29$C_2^2$ \( ( 1 - 1170 T^{2} + p^{4} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 + 3 T - 952 T^{2} + 3 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
37$C_2^2$ \( ( 1 + 17 T - 1080 T^{2} + 17 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
41$C_2^2$ \( ( 1 + 3136 T^{2} + p^{4} T^{4} )^{2} \)
43$C_2$ \( ( 1 + 85 T + p^{2} T^{2} )^{4} \)
47$C_2^3$ \( 1 - 784 T^{2} - 4265025 T^{4} - 784 p^{4} T^{6} + p^{8} T^{8} \)
53$C_2^3$ \( 1 + 4466 T^{2} + 12054675 T^{4} + 4466 p^{4} T^{6} + p^{8} T^{8} \)
59$C_2^3$ \( 1 - 1230 T^{2} - 10604461 T^{4} - 1230 p^{4} T^{6} + p^{8} T^{8} \)
61$C_2^2$ \( ( 1 - 72 T + 1463 T^{2} - 72 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
67$C_2^2$ \( ( 1 + 43 T - 2640 T^{2} + 43 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 - 7344 T^{2} + p^{4} T^{4} )^{2} \)
73$C_2^2$ \( ( 1 - 95 T + 3696 T^{2} - 95 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
79$C_2^2$ \( ( 1 + 69 T - 1480 T^{2} + 69 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 - 10080 T^{2} + p^{4} T^{4} )^{2} \)
89$C_2^3$ \( 1 - 2590 T^{2} - 56034141 T^{4} - 2590 p^{4} T^{6} + p^{8} T^{8} \)
97$C_2$ \( ( 1 - 16 T + p^{2} T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.886456033873053057547698701440, −8.781042143002307097180148557661, −8.756887335646631228562842770883, −8.739241601382243938514227346113, −8.722888319660509396132606708941, −8.040117888735218415860618520652, −7.900159430104393461899120165310, −7.87632734572414259186465954464, −7.57403421057571864717543549380, −6.82554066571279616578355568653, −6.60099715613805147644968038905, −6.47383219470546976527585392406, −6.03456938735435264446836970504, −5.44626209785701800683384994054, −5.37960733032248306767664161930, −5.01519337849101024268367096265, −4.94199475222599745543962838668, −4.11551439767430689649463932261, −3.83648397381795246772166286568, −3.54997235411080694041214942821, −3.35453244028767679761011196441, −2.23655606928135104505571122569, −1.61804728909872112504619206933, −1.44299458482112654557340022845, −1.35932590013401162595765589110, 1.35932590013401162595765589110, 1.44299458482112654557340022845, 1.61804728909872112504619206933, 2.23655606928135104505571122569, 3.35453244028767679761011196441, 3.54997235411080694041214942821, 3.83648397381795246772166286568, 4.11551439767430689649463932261, 4.94199475222599745543962838668, 5.01519337849101024268367096265, 5.37960733032248306767664161930, 5.44626209785701800683384994054, 6.03456938735435264446836970504, 6.47383219470546976527585392406, 6.60099715613805147644968038905, 6.82554066571279616578355568653, 7.57403421057571864717543549380, 7.87632734572414259186465954464, 7.900159430104393461899120165310, 8.040117888735218415860618520652, 8.722888319660509396132606708941, 8.739241601382243938514227346113, 8.756887335646631228562842770883, 8.781042143002307097180148557661, 9.886456033873053057547698701440

Graph of the $Z$-function along the critical line