Properties

Label 8-1260e4-1.1-c1e4-0-7
Degree $8$
Conductor $2.520\times 10^{12}$
Sign $1$
Analytic cond. $10246.8$
Root an. cond. $3.17193$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 2·4-s + 4·8-s + 8·16-s − 24·19-s − 2·25-s − 4·29-s + 24·31-s + 8·32-s − 24·37-s − 48·38-s − 2·49-s − 4·50-s − 8·53-s − 8·58-s + 48·62-s + 8·64-s − 48·74-s − 48·76-s + 48·83-s − 4·98-s − 4·100-s + 48·103-s − 16·106-s + 36·109-s − 8·113-s − 8·116-s + ⋯
L(s)  = 1  + 1.41·2-s + 4-s + 1.41·8-s + 2·16-s − 5.50·19-s − 2/5·25-s − 0.742·29-s + 4.31·31-s + 1.41·32-s − 3.94·37-s − 7.78·38-s − 2/7·49-s − 0.565·50-s − 1.09·53-s − 1.05·58-s + 6.09·62-s + 64-s − 5.57·74-s − 5.50·76-s + 5.26·83-s − 0.404·98-s − 2/5·100-s + 4.72·103-s − 1.55·106-s + 3.44·109-s − 0.752·113-s − 0.742·116-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{8} \cdot 5^{4} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{8} \cdot 5^{4} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{8} \cdot 3^{8} \cdot 5^{4} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(10246.8\)
Root analytic conductor: \(3.17193\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{8} \cdot 3^{8} \cdot 5^{4} \cdot 7^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(5.250390352\)
\(L(\frac12)\) \(\approx\) \(5.250390352\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2^2$ \( 1 - p T + p T^{2} - p^{2} T^{3} + p^{2} T^{4} \)
3 \( 1 \)
5$C_2$ \( ( 1 + T^{2} )^{2} \)
7$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
good11$D_4\times C_2$ \( 1 - 30 T^{2} + 419 T^{4} - 30 p^{2} T^{6} + p^{4} T^{8} \)
13$C_2^2$$\times$$C_2^2$ \( ( 1 - 4 T + 3 T^{2} - 4 p T^{3} + p^{2} T^{4} )( 1 + 4 T + 3 T^{2} + 4 p T^{3} + p^{2} T^{4} ) \)
17$D_4\times C_2$ \( 1 - 26 T^{2} + 315 T^{4} - 26 p^{2} T^{6} + p^{4} T^{8} \)
19$C_2$ \( ( 1 + 6 T + p T^{2} )^{4} \)
23$D_4\times C_2$ \( 1 - 60 T^{2} + 1766 T^{4} - 60 p^{2} T^{6} + p^{4} T^{8} \)
29$D_{4}$ \( ( 1 + 2 T + 11 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
31$C_2$ \( ( 1 - 6 T + p T^{2} )^{4} \)
37$D_{4}$ \( ( 1 + 12 T + 98 T^{2} + 12 p T^{3} + p^{2} T^{4} )^{2} \)
41$C_2^2$ \( ( 1 - 70 T^{2} + p^{2} T^{4} )^{2} \)
43$C_2^2$ \( ( 1 - 82 T^{2} + p^{2} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 + 91 T^{2} + p^{2} T^{4} )^{2} \)
53$C_2$ \( ( 1 + 2 T + p T^{2} )^{4} \)
59$C_2^2$ \( ( 1 + 106 T^{2} + p^{2} T^{4} )^{2} \)
61$D_4\times C_2$ \( 1 - 148 T^{2} + 11190 T^{4} - 148 p^{2} T^{6} + p^{4} T^{8} \)
67$C_2$ \( ( 1 - 16 T + p T^{2} )^{2}( 1 + 16 T + p T^{2} )^{2} \)
71$D_4\times C_2$ \( 1 - 228 T^{2} + 22310 T^{4} - 228 p^{2} T^{6} + p^{4} T^{8} \)
73$D_4\times C_2$ \( 1 - 124 T^{2} + 7590 T^{4} - 124 p^{2} T^{6} + p^{4} T^{8} \)
79$D_4\times C_2$ \( 1 - 94 T^{2} + 3891 T^{4} - 94 p^{2} T^{6} + p^{4} T^{8} \)
83$D_{4}$ \( ( 1 - 24 T + 298 T^{2} - 24 p T^{3} + p^{2} T^{4} )^{2} \)
89$D_4\times C_2$ \( 1 - 260 T^{2} + 31014 T^{4} - 260 p^{2} T^{6} + p^{4} T^{8} \)
97$D_4\times C_2$ \( 1 - 154 T^{2} + 20859 T^{4} - 154 p^{2} T^{6} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.70942207062398585066244545778, −6.46729655932502257039330089598, −6.39288908155171626429376229856, −6.34526710080354409511228400849, −6.12375857990017982652123914162, −5.98889347676214098991509499741, −5.55495079547206395839902428998, −5.21324941422193871365956030584, −4.91622927041094039839603390819, −4.80946036397823222361816509719, −4.66516084301488238001165598389, −4.48739208313487072455953898385, −4.38265057850529884408424905605, −3.84893615351133428777818958591, −3.71539924097507702492781206413, −3.62542349700719854761917951003, −3.30947402138291741896206331044, −2.96335085214019490004100720949, −2.44995537663784155786992805513, −2.31209634573333695917693431686, −1.99017824741381877206560464709, −1.83413695762571736137334436232, −1.64114303492814768542305209505, −0.76785247261405926814438718993, −0.40730130530226666974879295826, 0.40730130530226666974879295826, 0.76785247261405926814438718993, 1.64114303492814768542305209505, 1.83413695762571736137334436232, 1.99017824741381877206560464709, 2.31209634573333695917693431686, 2.44995537663784155786992805513, 2.96335085214019490004100720949, 3.30947402138291741896206331044, 3.62542349700719854761917951003, 3.71539924097507702492781206413, 3.84893615351133428777818958591, 4.38265057850529884408424905605, 4.48739208313487072455953898385, 4.66516084301488238001165598389, 4.80946036397823222361816509719, 4.91622927041094039839603390819, 5.21324941422193871365956030584, 5.55495079547206395839902428998, 5.98889347676214098991509499741, 6.12375857990017982652123914162, 6.34526710080354409511228400849, 6.39288908155171626429376229856, 6.46729655932502257039330089598, 6.70942207062398585066244545778

Graph of the $Z$-function along the critical line