L(s) = 1 | + 4·9-s − 16·13-s + 12·17-s + 14·25-s − 24·29-s + 8·37-s + 26·49-s + 24·53-s − 44·73-s − 6·81-s − 56·109-s − 64·117-s + 10·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 48·153-s + 157-s + 163-s + 167-s + 108·169-s + 173-s + 179-s + 181-s + ⋯ |
L(s) = 1 | + 4/3·9-s − 4.43·13-s + 2.91·17-s + 14/5·25-s − 4.45·29-s + 1.31·37-s + 26/7·49-s + 3.29·53-s − 5.14·73-s − 2/3·81-s − 5.36·109-s − 5.91·117-s + 0.909·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 3.88·153-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 8.30·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 19^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 19^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.190153847\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.190153847\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | | \( 1 \) |
| 19 | $C_2^2$ | \( 1 + 26 T^{2} + p^{2} T^{4} \) |
good | 3 | $C_2^2$ | \( ( 1 - 2 T^{2} + p^{2} T^{4} )^{2} \) |
| 5 | $C_2^2$ | \( ( 1 - 7 T^{2} + p^{2} T^{4} )^{2} \) |
| 7 | $C_2^2$ | \( ( 1 - 13 T^{2} + p^{2} T^{4} )^{2} \) |
| 11 | $C_2^2$ | \( ( 1 - 5 T^{2} + p^{2} T^{4} )^{2} \) |
| 13 | $C_2$ | \( ( 1 + 4 T + p T^{2} )^{4} \) |
| 17 | $C_2$ | \( ( 1 - 3 T + p T^{2} )^{4} \) |
| 23 | $C_2$ | \( ( 1 - p T^{2} )^{4} \) |
| 29 | $C_2$ | \( ( 1 + 6 T + p T^{2} )^{4} \) |
| 31 | $C_2^2$ | \( ( 1 - 46 T^{2} + p^{2} T^{4} )^{2} \) |
| 37 | $C_2$ | \( ( 1 - 2 T + p T^{2} )^{4} \) |
| 41 | $C_2^2$ | \( ( 1 - 70 T^{2} + p^{2} T^{4} )^{2} \) |
| 43 | $C_2^2$ | \( ( 1 + 59 T^{2} + p^{2} T^{4} )^{2} \) |
| 47 | $C_2^2$ | \( ( 1 - 13 T^{2} + p^{2} T^{4} )^{2} \) |
| 53 | $C_2$ | \( ( 1 - 6 T + p T^{2} )^{4} \) |
| 59 | $C_2$ | \( ( 1 - p T^{2} )^{4} \) |
| 61 | $C_2^2$ | \( ( 1 - 119 T^{2} + p^{2} T^{4} )^{2} \) |
| 67 | $C_2^2$ | \( ( 1 - 130 T^{2} + p^{2} T^{4} )^{2} \) |
| 71 | $C_2^2$ | \( ( 1 + 94 T^{2} + p^{2} T^{4} )^{2} \) |
| 73 | $C_2$ | \( ( 1 + 11 T + p T^{2} )^{4} \) |
| 79 | $C_2^2$ | \( ( 1 + 146 T^{2} + p^{2} T^{4} )^{2} \) |
| 83 | $C_2^2$ | \( ( 1 + 154 T^{2} + p^{2} T^{4} )^{2} \) |
| 89 | $C_2^2$ | \( ( 1 - 166 T^{2} + p^{2} T^{4} )^{2} \) |
| 97 | $C_2$ | \( ( 1 - 14 T + p T^{2} )^{2}( 1 + 14 T + p T^{2} )^{2} \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.09704410691534492595996752076, −7.07471507580215251000913315380, −6.58615030010862309697059409641, −6.44748727415321766850422115321, −5.73152534511079310640977110835, −5.70508764640493290913318046038, −5.66451625682008719978681713578, −5.31007649048149705749361548648, −5.19521999778825856942435381932, −5.17859800304580118990284867436, −4.68759101457801892524595668614, −4.29623557514844464208380390629, −4.22668199946644908781172766466, −4.01140617960797528362668159308, −3.95611627419880782726378646121, −3.30091327831325657875194798288, −3.09559554929016288658165323050, −2.81120755735681013721697386347, −2.59392046250544133744023485433, −2.37288885591025245132387812213, −2.09745859622874046655580551569, −1.60550461373467879002857087036, −1.17134323649567858376662904904, −1.01102998948017035303886863168, −0.24004515818610407882153837512,
0.24004515818610407882153837512, 1.01102998948017035303886863168, 1.17134323649567858376662904904, 1.60550461373467879002857087036, 2.09745859622874046655580551569, 2.37288885591025245132387812213, 2.59392046250544133744023485433, 2.81120755735681013721697386347, 3.09559554929016288658165323050, 3.30091327831325657875194798288, 3.95611627419880782726378646121, 4.01140617960797528362668159308, 4.22668199946644908781172766466, 4.29623557514844464208380390629, 4.68759101457801892524595668614, 5.17859800304580118990284867436, 5.19521999778825856942435381932, 5.31007649048149705749361548648, 5.66451625682008719978681713578, 5.70508764640493290913318046038, 5.73152534511079310640977110835, 6.44748727415321766850422115321, 6.58615030010862309697059409641, 7.07471507580215251000913315380, 7.09704410691534492595996752076