L(s) = 1 | + 22·5-s − 18·9-s + 148·11-s + 160·19-s + 242·25-s − 100·29-s − 24·31-s + 688·41-s − 396·45-s − 952·49-s + 3.25e3·55-s − 1.33e3·59-s + 488·61-s + 616·71-s − 2.10e3·79-s + 243·81-s − 1.36e3·89-s + 3.52e3·95-s − 2.66e3·99-s + 4.95e3·101-s − 1.10e3·109-s + 8.62e3·121-s + 2.75e3·125-s + 127-s + 131-s + 137-s + 139-s + ⋯ |
L(s) = 1 | + 1.96·5-s − 2/3·9-s + 4.05·11-s + 1.93·19-s + 1.93·25-s − 0.640·29-s − 0.139·31-s + 2.62·41-s − 1.31·45-s − 2.77·49-s + 7.98·55-s − 2.93·59-s + 1.02·61-s + 1.02·71-s − 2.99·79-s + 1/3·81-s − 1.62·89-s + 3.80·95-s − 2.70·99-s + 4.88·101-s − 0.970·109-s + 6.47·121-s + 1.96·125-s + 0.000698·127-s + 0.000666·131-s + 0.000623·137-s + 0.000610·139-s + ⋯ |
Λ(s)=(=((212⋅34⋅54)s/2ΓC(s)4L(s)Λ(4−s)
Λ(s)=(=((212⋅34⋅54)s/2ΓC(s+3/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
212⋅34⋅54
|
Sign: |
1
|
Analytic conductor: |
2512.98 |
Root analytic conductor: |
2.66087 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 212⋅34⋅54, ( :3/2,3/2,3/2,3/2), 1)
|
Particular Values
L(2) |
≈ |
7.900331105 |
L(21) |
≈ |
7.900331105 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C2 | (1+p2T2)2 |
| 5 | C22 | 1−22T+242T2−22p3T3+p6T4 |
good | 7 | D4×C2 | 1+136pT2+457230T4+136p7T6+p12T8 |
| 11 | D4 | (1−74T+3902T2−74p3T3+p6T4)2 |
| 13 | D4×C2 | 1−3728T2+11889198T4−3728p6T6+p12T8 |
| 17 | D4×C2 | 1−10160T2+54460638T4−10160p6T6+p12T8 |
| 19 | D4 | (1−80T+7062T2−80p3T3+p6T4)2 |
| 23 | D4×C2 | 1−31356T2+528661862T4−31356p6T6+p12T8 |
| 29 | D4 | (1+50T+43082T2+50p3T3+p6T4)2 |
| 31 | D4 | (1+12T+17822T2+12p3T3+p6T4)2 |
| 37 | D4×C2 | 1−40784T2+5454083982T4−40784p6T6+p12T8 |
| 41 | D4 | (1−344T+162782T2−344p3T3+p6T4)2 |
| 43 | C22 | (1−147350T2+p6T4)2 |
| 47 | D4×C2 | 1+18964T2+2246004198T4+18964p6T6+p12T8 |
| 53 | D4×C2 | 1−394272T2+83139472430T4−394272p6T6+p12T8 |
| 59 | D4 | (1+666T+211918T2+666p3T3+p6T4)2 |
| 61 | D4 | (1−4pT+336750T2−4p4T3+p6T4)2 |
| 67 | D4×C2 | 1−424604T2+82770213942T4−424604p6T6+p12T8 |
| 71 | D4 | (1−308T+553262T2−308p3T3+p6T4)2 |
| 73 | D4×C2 | 1−186644T2−60009209082T4−186644p6T6+p12T8 |
| 79 | D4 | (1+1052T+1237470T2+1052p3T3+p6T4)2 |
| 83 | D4×C2 | 1−2190348T2+1851255728918T4−2190348p6T6+p12T8 |
| 89 | D4 | (1+684T+1229686T2+684p3T3+p6T4)2 |
| 97 | D4×C2 | 1−1693700T2+1935874714758T4−1693700p6T6+p12T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.459691099489557829666822620245, −9.164387088752878325423512724974, −8.999138419914933678607168032711, −8.905456424066426732818790223438, −8.404399285178460973213610555870, −8.075174455443012467585554249264, −7.52160920096974116156534185047, −7.31455869948494938565759026149, −7.11271283942209307565796333633, −6.43602118167436456770529261870, −6.39164619785762993858077139790, −6.24877512724909560348703093536, −5.94932090656668889734369235222, −5.53345386431883575173458458270, −5.29910222218419789012278081000, −4.74550838166045550077459762798, −4.38897258711049096191606133481, −3.98283864078735772869535659546, −3.62980877620348759504541606460, −3.01376935274297240641932811492, −2.95304287587602149070490726955, −1.98614592785421455403547198093, −1.59749681186365131846113244135, −1.34871222697443959106075745453, −0.78487325745986751004655743653,
0.78487325745986751004655743653, 1.34871222697443959106075745453, 1.59749681186365131846113244135, 1.98614592785421455403547198093, 2.95304287587602149070490726955, 3.01376935274297240641932811492, 3.62980877620348759504541606460, 3.98283864078735772869535659546, 4.38897258711049096191606133481, 4.74550838166045550077459762798, 5.29910222218419789012278081000, 5.53345386431883575173458458270, 5.94932090656668889734369235222, 6.24877512724909560348703093536, 6.39164619785762993858077139790, 6.43602118167436456770529261870, 7.11271283942209307565796333633, 7.31455869948494938565759026149, 7.52160920096974116156534185047, 8.075174455443012467585554249264, 8.404399285178460973213610555870, 8.905456424066426732818790223438, 8.999138419914933678607168032711, 9.164387088752878325423512724974, 9.459691099489557829666822620245