Properties

Label 8-1200e4-1.1-c2e4-0-8
Degree $8$
Conductor $2.074\times 10^{12}$
Sign $1$
Analytic cond. $1.14304\times 10^{6}$
Root an. cond. $5.71818$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 6·9-s − 120·29-s + 144·41-s − 190·49-s + 140·61-s + 27·81-s − 576·89-s − 192·101-s − 676·109-s + 460·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 434·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + ⋯
L(s)  = 1  + 2/3·9-s − 4.13·29-s + 3.51·41-s − 3.87·49-s + 2.29·61-s + 1/3·81-s − 6.47·89-s − 1.90·101-s − 6.20·109-s + 3.80·121-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + 0.00613·163-s + 0.00598·167-s + 2.56·169-s + 0.00578·173-s + 0.00558·179-s + 0.00552·181-s + 0.00523·191-s + 0.00518·193-s + 0.00507·197-s + 0.00502·199-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{4} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{4} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s+1)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{16} \cdot 3^{4} \cdot 5^{8}\)
Sign: $1$
Analytic conductor: \(1.14304\times 10^{6}\)
Root analytic conductor: \(5.71818\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{16} \cdot 3^{4} \cdot 5^{8} ,\ ( \ : 1, 1, 1, 1 ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.7043789181\)
\(L(\frac12)\) \(\approx\) \(0.7043789181\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( ( 1 - p T^{2} )^{2} \)
5 \( 1 \)
good7$C_2^2$ \( ( 1 + 95 T^{2} + p^{4} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 - 230 T^{2} + p^{4} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 - 217 T^{2} + p^{4} T^{4} )^{2} \)
17$C_2^2$ \( ( 1 - 542 T^{2} + p^{4} T^{4} )^{2} \)
19$C_2^2$ \( ( 1 - 359 T^{2} + p^{4} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 + 758 T^{2} + p^{4} T^{4} )^{2} \)
29$C_2$ \( ( 1 + 30 T + p^{2} T^{2} )^{4} \)
31$C_2^2$ \( ( 1 - 1895 T^{2} + p^{4} T^{4} )^{2} \)
37$C_2^2$ \( ( 1 - 2542 T^{2} + p^{4} T^{4} )^{2} \)
41$C_2$ \( ( 1 - 36 T + p^{2} T^{2} )^{4} \)
43$C_2^2$ \( ( 1 + 3671 T^{2} + p^{4} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 + 2390 T^{2} + p^{4} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 - 434 T^{2} + p^{4} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 - 5510 T^{2} + p^{4} T^{4} )^{2} \)
61$C_2$ \( ( 1 - 35 T + p^{2} T^{2} )^{4} \)
67$C_2^2$ \( ( 1 + 8111 T^{2} + p^{4} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 - 1970 T^{2} + p^{4} T^{4} )^{2} \)
73$C_2^2$ \( ( 1 - 6814 T^{2} + p^{4} T^{4} )^{2} \)
79$C_2^2$ \( ( 1 - 6674 T^{2} + p^{4} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 + 8486 T^{2} + p^{4} T^{4} )^{2} \)
89$C_2$ \( ( 1 + 144 T + p^{2} T^{2} )^{4} \)
97$C_2^2$ \( ( 1 + 13943 T^{2} + p^{4} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.70914653173365013321895008960, −6.59438630692957160981668187443, −6.47211707500753603677775271889, −5.95050031053504605572890103710, −5.76402387187312834536328528913, −5.71748178563081017341005063189, −5.56454754883464187587039666493, −5.10496919745994120992175968115, −5.08090220550570368596620455373, −4.79649580902870168528975995178, −4.36828006469821018332004503201, −4.02223465130128545243532778045, −3.98997114949658085910902153612, −3.88987851725640632245695980432, −3.71797406006943714035799192229, −3.05089525086717588271436051533, −2.96243241309533412565288641995, −2.67817604179921099778019859525, −2.38708443020714735178071088897, −2.04854346431068057268449847962, −1.54973506931067582063636369015, −1.45926930268131202525043035415, −1.30606940633592018898045871650, −0.54216950204474367361884569964, −0.14123767706450036840143239388, 0.14123767706450036840143239388, 0.54216950204474367361884569964, 1.30606940633592018898045871650, 1.45926930268131202525043035415, 1.54973506931067582063636369015, 2.04854346431068057268449847962, 2.38708443020714735178071088897, 2.67817604179921099778019859525, 2.96243241309533412565288641995, 3.05089525086717588271436051533, 3.71797406006943714035799192229, 3.88987851725640632245695980432, 3.98997114949658085910902153612, 4.02223465130128545243532778045, 4.36828006469821018332004503201, 4.79649580902870168528975995178, 5.08090220550570368596620455373, 5.10496919745994120992175968115, 5.56454754883464187587039666493, 5.71748178563081017341005063189, 5.76402387187312834536328528913, 5.95050031053504605572890103710, 6.47211707500753603677775271889, 6.59438630692957160981668187443, 6.70914653173365013321895008960

Graph of the $Z$-function along the critical line