Properties

Label 8-1200e4-1.1-c2e4-0-4
Degree $8$
Conductor $2.074\times 10^{12}$
Sign $1$
Analytic cond. $1.14304\times 10^{6}$
Root an. cond. $5.71818$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 6·9-s − 120·29-s − 216·41-s − 100·49-s − 280·61-s + 27·81-s − 456·89-s − 72·101-s − 136·109-s − 380·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 284·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + ⋯
L(s)  = 1  + 2/3·9-s − 4.13·29-s − 5.26·41-s − 2.04·49-s − 4.59·61-s + 1/3·81-s − 5.12·89-s − 0.712·101-s − 1.24·109-s − 3.14·121-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + 0.00613·163-s + 0.00598·167-s + 1.68·169-s + 0.00578·173-s + 0.00558·179-s + 0.00552·181-s + 0.00523·191-s + 0.00518·193-s + 0.00507·197-s + 0.00502·199-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{4} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{4} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s+1)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{16} \cdot 3^{4} \cdot 5^{8}\)
Sign: $1$
Analytic conductor: \(1.14304\times 10^{6}\)
Root analytic conductor: \(5.71818\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{16} \cdot 3^{4} \cdot 5^{8} ,\ ( \ : 1, 1, 1, 1 ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.08757405120\)
\(L(\frac12)\) \(\approx\) \(0.08757405120\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( ( 1 - p T^{2} )^{2} \)
5 \( 1 \)
good7$C_2^2$ \( ( 1 + 50 T^{2} + p^{4} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 + 190 T^{2} + p^{4} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 - 142 T^{2} + p^{4} T^{4} )^{2} \)
17$C_2^2$ \( ( 1 - 542 T^{2} + p^{4} T^{4} )^{2} \)
19$C_2^2$ \( ( 1 - 674 T^{2} + p^{4} T^{4} )^{2} \)
23$C_2$ \( ( 1 + p^{2} T^{2} )^{4} \)
29$C_2$ \( ( 1 + 30 T + p^{2} T^{2} )^{4} \)
31$C_2^2$ \( ( 1 - 1490 T^{2} + p^{4} T^{4} )^{2} \)
37$C_2^2$ \( ( 1 - 2062 T^{2} + p^{4} T^{4} )^{2} \)
41$C_2$ \( ( 1 + 54 T + p^{2} T^{2} )^{4} \)
43$C_2^2$ \( ( 1 + 3266 T^{2} + p^{4} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 + 2690 T^{2} + p^{4} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 - 5294 T^{2} + p^{4} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 - 6530 T^{2} + p^{4} T^{4} )^{2} \)
61$C_2$ \( ( 1 + 70 T + p^{2} T^{2} )^{4} \)
67$C_2^2$ \( ( 1 - 4894 T^{2} + p^{4} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 - 3170 T^{2} + p^{4} T^{4} )^{2} \)
73$C_2^2$ \( ( 1 - 3934 T^{2} + p^{4} T^{4} )^{2} \)
79$C_2^2$ \( ( 1 - 6674 T^{2} + p^{4} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 + 13346 T^{2} + p^{4} T^{4} )^{2} \)
89$C_2$ \( ( 1 + 114 T + p^{2} T^{2} )^{4} \)
97$C_2^2$ \( ( 1 - 17662 T^{2} + p^{4} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.70919093595165967541596074901, −6.67484956755454685107158347316, −6.55907650273867380013575366662, −6.00590895154301175419360934194, −5.78392039366067350208952422303, −5.61922406967369563162984585860, −5.44133577992963164756793109586, −5.36149102430139969782919438737, −4.78283554237870000153097629124, −4.73120253490252440658528827202, −4.68627805415718248358908095525, −4.09437945903573076789210034301, −4.01987455564630607744948866477, −3.75120483173843694493621255557, −3.48632982265077855393460615826, −3.13567974274412808040457746303, −3.07801167917781216048349993365, −2.80653937374522856400986723019, −2.28954080874580889599029546163, −1.74750140402972816189692388517, −1.63481924997936591081105886660, −1.54680023873501607434056941632, −1.47016003589184991811843303834, −0.38597456602211916837144430186, −0.06396291648917562664956881568, 0.06396291648917562664956881568, 0.38597456602211916837144430186, 1.47016003589184991811843303834, 1.54680023873501607434056941632, 1.63481924997936591081105886660, 1.74750140402972816189692388517, 2.28954080874580889599029546163, 2.80653937374522856400986723019, 3.07801167917781216048349993365, 3.13567974274412808040457746303, 3.48632982265077855393460615826, 3.75120483173843694493621255557, 4.01987455564630607744948866477, 4.09437945903573076789210034301, 4.68627805415718248358908095525, 4.73120253490252440658528827202, 4.78283554237870000153097629124, 5.36149102430139969782919438737, 5.44133577992963164756793109586, 5.61922406967369563162984585860, 5.78392039366067350208952422303, 6.00590895154301175419360934194, 6.55907650273867380013575366662, 6.67484956755454685107158347316, 6.70919093595165967541596074901

Graph of the $Z$-function along the critical line