Properties

Label 8-1200e4-1.1-c2e4-0-26
Degree $8$
Conductor $2.074\times 10^{12}$
Sign $1$
Analytic cond. $1.14304\times 10^{6}$
Root an. cond. $5.71818$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6·9-s + 32·29-s + 200·41-s + 172·49-s − 104·61-s + 27·81-s + 344·89-s − 128·101-s − 520·109-s − 20·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 508·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + ⋯
L(s)  = 1  − 2/3·9-s + 1.10·29-s + 4.87·41-s + 3.51·49-s − 1.70·61-s + 1/3·81-s + 3.86·89-s − 1.26·101-s − 4.77·109-s − 0.165·121-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + 0.00613·163-s + 0.00598·167-s − 3.00·169-s + 0.00578·173-s + 0.00558·179-s + 0.00552·181-s + 0.00523·191-s + 0.00518·193-s + 0.00507·197-s + 0.00502·199-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{4} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{4} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s+1)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{16} \cdot 3^{4} \cdot 5^{8}\)
Sign: $1$
Analytic conductor: \(1.14304\times 10^{6}\)
Root analytic conductor: \(5.71818\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{16} \cdot 3^{4} \cdot 5^{8} ,\ ( \ : 1, 1, 1, 1 ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(5.580304745\)
\(L(\frac12)\) \(\approx\) \(5.580304745\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( ( 1 + p T^{2} )^{2} \)
5 \( 1 \)
good7$C_2^2$ \( ( 1 - 86 T^{2} + p^{4} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 + 10 T^{2} + p^{4} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 + 254 T^{2} + p^{4} T^{4} )^{2} \)
17$C_2^2$ \( ( 1 + 494 T^{2} + p^{4} T^{4} )^{2} \)
19$C_2^2$ \( ( 1 + 286 T^{2} + p^{4} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 - 290 T^{2} + p^{4} T^{4} )^{2} \)
29$C_2$ \( ( 1 - 8 T + p^{2} T^{2} )^{4} \)
31$C_1$$\times$$C_1$ \( ( 1 - p T )^{4}( 1 + p T )^{4} \)
37$C_2^2$ \( ( 1 + 638 T^{2} + p^{4} T^{4} )^{2} \)
41$C_2$ \( ( 1 - 50 T + p^{2} T^{2} )^{4} \)
43$C_2^2$ \( ( 1 + 190 T^{2} + p^{4} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 - 2066 T^{2} + p^{4} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 + 4862 T^{2} + p^{4} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 - 6710 T^{2} + p^{4} T^{4} )^{2} \)
61$C_2$ \( ( 1 + 26 T + p^{2} T^{2} )^{4} \)
67$C_2$ \( ( 1 - 122 T + p^{2} T^{2} )^{2}( 1 + 122 T + p^{2} T^{2} )^{2} \)
71$C_2^2$ \( ( 1 - 1010 T^{2} + p^{4} T^{4} )^{2} \)
73$C_2^2$ \( ( 1 - 5806 T^{2} + p^{4} T^{4} )^{2} \)
79$C_2$ \( ( 1 - 94 T + p^{2} T^{2} )^{2}( 1 + 94 T + p^{2} T^{2} )^{2} \)
83$C_2^2$ \( ( 1 + 3550 T^{2} + p^{4} T^{4} )^{2} \)
89$C_2$ \( ( 1 - 86 T + p^{2} T^{2} )^{4} \)
97$C_2^2$ \( ( 1 + 6722 T^{2} + p^{4} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.74316956613087047397672367373, −6.51741139084481164557891572995, −6.17765503927852061894092313660, −6.13371412312643394948694235575, −5.94433430083636227326893424492, −5.65456438914869956351330913368, −5.44130453093342136289599551871, −5.34068819485486013700415451222, −4.97084337136529530208760746942, −4.58030929937929010275332014538, −4.46724470019835044366341367451, −4.35437692287545159859252850926, −3.90439512460461375445620699840, −3.74425715717684652509867698452, −3.68621225921823126169892495292, −3.07930645121568068364948672880, −2.71223115639037602565278185703, −2.65059256288880120732877730638, −2.60701123354635050177998409440, −2.13417240418404434657502447382, −1.82402197824797131408684102663, −1.18554592164764739387880470825, −1.09343677286255669572763725313, −0.57852596920097989732799426221, −0.44929959724500706533924568088, 0.44929959724500706533924568088, 0.57852596920097989732799426221, 1.09343677286255669572763725313, 1.18554592164764739387880470825, 1.82402197824797131408684102663, 2.13417240418404434657502447382, 2.60701123354635050177998409440, 2.65059256288880120732877730638, 2.71223115639037602565278185703, 3.07930645121568068364948672880, 3.68621225921823126169892495292, 3.74425715717684652509867698452, 3.90439512460461375445620699840, 4.35437692287545159859252850926, 4.46724470019835044366341367451, 4.58030929937929010275332014538, 4.97084337136529530208760746942, 5.34068819485486013700415451222, 5.44130453093342136289599551871, 5.65456438914869956351330913368, 5.94433430083636227326893424492, 6.13371412312643394948694235575, 6.17765503927852061894092313660, 6.51741139084481164557891572995, 6.74316956613087047397672367373

Graph of the $Z$-function along the critical line