Properties

Label 8-1200e4-1.1-c2e4-0-11
Degree $8$
Conductor $2.074\times 10^{12}$
Sign $1$
Analytic cond. $1.14304\times 10^{6}$
Root an. cond. $5.71818$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 16·7-s + 8·11-s − 16·17-s + 48·23-s − 56·31-s − 32·37-s − 8·41-s − 128·43-s − 80·47-s + 128·49-s + 32·53-s − 120·61-s + 96·67-s + 32·71-s + 256·73-s + 128·77-s − 9·81-s + 160·83-s − 160·97-s + 464·101-s − 336·103-s − 96·107-s − 400·113-s − 256·119-s − 252·121-s + 127-s + 131-s + ⋯
L(s)  = 1  + 16/7·7-s + 8/11·11-s − 0.941·17-s + 2.08·23-s − 1.80·31-s − 0.864·37-s − 0.195·41-s − 2.97·43-s − 1.70·47-s + 2.61·49-s + 0.603·53-s − 1.96·61-s + 1.43·67-s + 0.450·71-s + 3.50·73-s + 1.66·77-s − 1/9·81-s + 1.92·83-s − 1.64·97-s + 4.59·101-s − 3.26·103-s − 0.897·107-s − 3.53·113-s − 2.15·119-s − 2.08·121-s + 0.00787·127-s + 0.00763·131-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{4} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{4} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s+1)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{16} \cdot 3^{4} \cdot 5^{8}\)
Sign: $1$
Analytic conductor: \(1.14304\times 10^{6}\)
Root analytic conductor: \(5.71818\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: induced by $\chi_{1200} (1, \cdot )$
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{16} \cdot 3^{4} \cdot 5^{8} ,\ ( \ : 1, 1, 1, 1 ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.697160511\)
\(L(\frac12)\) \(\approx\) \(1.697160511\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2^2$ \( 1 + p^{2} T^{4} \)
5 \( 1 \)
good7$D_4\times C_2$ \( 1 - 16 T + 128 T^{2} - 1104 T^{3} + 9122 T^{4} - 1104 p^{2} T^{5} + 128 p^{4} T^{6} - 16 p^{6} T^{7} + p^{8} T^{8} \)
11$D_{4}$ \( ( 1 - 4 T + 150 T^{2} - 4 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
13$C_2^3$ \( 1 + 49154 T^{4} + p^{8} T^{8} \)
17$D_4\times C_2$ \( 1 + 16 T + 128 T^{2} + 4368 T^{3} + 148802 T^{4} + 4368 p^{2} T^{5} + 128 p^{4} T^{6} + 16 p^{6} T^{7} + p^{8} T^{8} \)
19$D_4\times C_2$ \( 1 - 284 T^{2} - 20250 T^{4} - 284 p^{4} T^{6} + p^{8} T^{8} \)
23$D_4\times C_2$ \( 1 - 48 T + 1152 T^{2} - 30000 T^{3} + 772034 T^{4} - 30000 p^{2} T^{5} + 1152 p^{4} T^{6} - 48 p^{6} T^{7} + p^{8} T^{8} \)
29$D_4\times C_2$ \( 1 - 2084 T^{2} + 2107110 T^{4} - 2084 p^{4} T^{6} + p^{8} T^{8} \)
31$D_{4}$ \( ( 1 + 28 T + 582 T^{2} + 28 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
37$D_4\times C_2$ \( 1 + 32 T + 512 T^{2} + 29088 T^{3} + 1440962 T^{4} + 29088 p^{2} T^{5} + 512 p^{4} T^{6} + 32 p^{6} T^{7} + p^{8} T^{8} \)
41$D_{4}$ \( ( 1 + 4 T - 90 T^{2} + 4 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
43$D_4\times C_2$ \( 1 + 128 T + 8192 T^{2} + 474240 T^{3} + 24009314 T^{4} + 474240 p^{2} T^{5} + 8192 p^{4} T^{6} + 128 p^{6} T^{7} + p^{8} T^{8} \)
47$D_4\times C_2$ \( 1 + 80 T + 3200 T^{2} + 144720 T^{3} + 6384962 T^{4} + 144720 p^{2} T^{5} + 3200 p^{4} T^{6} + 80 p^{6} T^{7} + p^{8} T^{8} \)
53$D_4\times C_2$ \( 1 - 32 T + 512 T^{2} + 30432 T^{3} - 12328798 T^{4} + 30432 p^{2} T^{5} + 512 p^{4} T^{6} - 32 p^{6} T^{7} + p^{8} T^{8} \)
59$D_4\times C_2$ \( 1 - 6236 T^{2} + 20094246 T^{4} - 6236 p^{4} T^{6} + p^{8} T^{8} \)
61$D_{4}$ \( ( 1 + 60 T + 2198 T^{2} + 60 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
67$D_4\times C_2$ \( 1 - 96 T + 4608 T^{2} + 16032 T^{3} - 21622558 T^{4} + 16032 p^{2} T^{5} + 4608 p^{4} T^{6} - 96 p^{6} T^{7} + p^{8} T^{8} \)
71$D_{4}$ \( ( 1 - 16 T + 6690 T^{2} - 16 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
73$D_4\times C_2$ \( 1 - 256 T + 32768 T^{2} - 3350784 T^{3} + 282426242 T^{4} - 3350784 p^{2} T^{5} + 32768 p^{4} T^{6} - 256 p^{6} T^{7} + p^{8} T^{8} \)
79$C_2^2$ \( ( 1 - 8126 T^{2} + p^{4} T^{4} )^{2} \)
83$D_4\times C_2$ \( 1 - 160 T + 12800 T^{2} - 992160 T^{3} + 76431458 T^{4} - 992160 p^{2} T^{5} + 12800 p^{4} T^{6} - 160 p^{6} T^{7} + p^{8} T^{8} \)
89$D_4\times C_2$ \( 1 - 30716 T^{2} + 361199046 T^{4} - 30716 p^{4} T^{6} + p^{8} T^{8} \)
97$D_4\times C_2$ \( 1 + 160 T + 12800 T^{2} - 755040 T^{3} - 155062462 T^{4} - 755040 p^{2} T^{5} + 12800 p^{4} T^{6} + 160 p^{6} T^{7} + p^{8} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.82368066432541184947905035629, −6.74850402592090170773691277156, −6.31189077259142773881089939127, −6.25574172121299180618507659986, −5.80132241049944495454685091268, −5.52986456028439871533524391148, −5.30598812845279994443659990887, −5.04332043608061405143473986385, −4.92738460129293001445860707059, −4.81890259208299077785154254331, −4.75838571989406891630853245673, −4.31469959694048762757159208761, −3.82461859843883811707593323968, −3.78978442847130694811631448167, −3.50395843452495333426592964898, −3.41684928128431408872540643889, −2.83573061144667286643712788808, −2.67661399124335091995316909737, −2.23974224438614818917391488029, −1.80102113429668621206935876758, −1.74192862740613911815301044592, −1.65011986435026234548087957195, −1.04274050703057721056799296918, −0.865957850751069624457649288029, −0.15984864011543995600087997804, 0.15984864011543995600087997804, 0.865957850751069624457649288029, 1.04274050703057721056799296918, 1.65011986435026234548087957195, 1.74192862740613911815301044592, 1.80102113429668621206935876758, 2.23974224438614818917391488029, 2.67661399124335091995316909737, 2.83573061144667286643712788808, 3.41684928128431408872540643889, 3.50395843452495333426592964898, 3.78978442847130694811631448167, 3.82461859843883811707593323968, 4.31469959694048762757159208761, 4.75838571989406891630853245673, 4.81890259208299077785154254331, 4.92738460129293001445860707059, 5.04332043608061405143473986385, 5.30598812845279994443659990887, 5.52986456028439871533524391148, 5.80132241049944495454685091268, 6.25574172121299180618507659986, 6.31189077259142773881089939127, 6.74850402592090170773691277156, 6.82368066432541184947905035629

Graph of the $Z$-function along the critical line