Properties

Label 8-1200e4-1.1-c1e4-0-17
Degree $8$
Conductor $2.074\times 10^{12}$
Sign $1$
Analytic cond. $8430.11$
Root an. cond. $3.09548$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·7-s + 2·9-s − 4·13-s − 4·17-s + 12·23-s − 8·29-s + 12·37-s + 4·43-s + 20·47-s + 8·49-s + 12·53-s + 16·59-s + 24·61-s − 8·63-s + 12·67-s − 4·73-s − 5·81-s − 4·83-s + 40·89-s + 16·91-s − 4·97-s − 28·103-s − 44·107-s − 4·113-s − 8·117-s + 16·119-s + 20·121-s + ⋯
L(s)  = 1  − 1.51·7-s + 2/3·9-s − 1.10·13-s − 0.970·17-s + 2.50·23-s − 1.48·29-s + 1.97·37-s + 0.609·43-s + 2.91·47-s + 8/7·49-s + 1.64·53-s + 2.08·59-s + 3.07·61-s − 1.00·63-s + 1.46·67-s − 0.468·73-s − 5/9·81-s − 0.439·83-s + 4.23·89-s + 1.67·91-s − 0.406·97-s − 2.75·103-s − 4.25·107-s − 0.376·113-s − 0.739·117-s + 1.46·119-s + 1.81·121-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{4} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{4} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{16} \cdot 3^{4} \cdot 5^{8}\)
Sign: $1$
Analytic conductor: \(8430.11\)
Root analytic conductor: \(3.09548\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{16} \cdot 3^{4} \cdot 5^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(3.121150337\)
\(L(\frac12)\) \(\approx\) \(3.121150337\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
5 \( 1 \)
good7$D_4\times C_2$ \( 1 + 4 T + 8 T^{2} + 20 T^{3} + 46 T^{4} + 20 p T^{5} + 8 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} \)
11$D_4\times C_2$ \( 1 - 20 T^{2} + 214 T^{4} - 20 p^{2} T^{6} + p^{4} T^{8} \)
13$D_4\times C_2$ \( 1 + 4 T + 8 T^{2} - 4 T^{3} - 194 T^{4} - 4 p T^{5} + 8 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} \)
17$D_4\times C_2$ \( 1 + 4 T + 8 T^{2} + 12 T^{3} - 178 T^{4} + 12 p T^{5} + 8 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} \)
19$D_4\times C_2$ \( 1 - 52 T^{2} + 1270 T^{4} - 52 p^{2} T^{6} + p^{4} T^{8} \)
23$D_4\times C_2$ \( 1 - 12 T + 72 T^{2} - 444 T^{3} + 2542 T^{4} - 444 p T^{5} + 72 p^{2} T^{6} - 12 p^{3} T^{7} + p^{4} T^{8} \)
29$D_{4}$ \( ( 1 + 4 T + 30 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 + 30 T^{2} + p^{2} T^{4} )^{2} \)
37$D_4\times C_2$ \( 1 - 12 T + 72 T^{2} - 468 T^{3} + 3038 T^{4} - 468 p T^{5} + 72 p^{2} T^{6} - 12 p^{3} T^{7} + p^{4} T^{8} \)
41$C_2^2$ \( ( 1 - 50 T^{2} + p^{2} T^{4} )^{2} \)
43$D_4\times C_2$ \( 1 - 4 T + 8 T^{2} - 164 T^{3} + 3358 T^{4} - 164 p T^{5} + 8 p^{2} T^{6} - 4 p^{3} T^{7} + p^{4} T^{8} \)
47$D_4\times C_2$ \( 1 - 20 T + 200 T^{2} - 1860 T^{3} + 15182 T^{4} - 1860 p T^{5} + 200 p^{2} T^{6} - 20 p^{3} T^{7} + p^{4} T^{8} \)
53$C_2^2$ \( ( 1 - 6 T + 18 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2} \)
59$C_2$ \( ( 1 - 4 T + p T^{2} )^{4} \)
61$D_{4}$ \( ( 1 - 12 T + 126 T^{2} - 12 p T^{3} + p^{2} T^{4} )^{2} \)
67$D_4\times C_2$ \( 1 - 12 T + 72 T^{2} + 180 T^{3} - 6274 T^{4} + 180 p T^{5} + 72 p^{2} T^{6} - 12 p^{3} T^{7} + p^{4} T^{8} \)
71$D_4\times C_2$ \( 1 - 132 T^{2} + 13286 T^{4} - 132 p^{2} T^{6} + p^{4} T^{8} \)
73$D_4\times C_2$ \( 1 + 4 T + 8 T^{2} + 44 T^{3} - 3602 T^{4} + 44 p T^{5} + 8 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} \)
79$D_4\times C_2$ \( 1 - 292 T^{2} + 33670 T^{4} - 292 p^{2} T^{6} + p^{4} T^{8} \)
83$D_4\times C_2$ \( 1 + 4 T + 8 T^{2} + 196 T^{3} + 3646 T^{4} + 196 p T^{5} + 8 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} \)
89$D_{4}$ \( ( 1 - 20 T + 246 T^{2} - 20 p T^{3} + p^{2} T^{4} )^{2} \)
97$C_2^2$ \( ( 1 + 2 T + 2 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.00445985598341461780265280614, −6.90253930288559556773994584391, −6.82829773912297807694231438333, −6.29642219959939020306772271874, −6.16206731111710385031210453306, −5.60373077247507310356585937024, −5.57817122955142603615790371469, −5.50741524443740044845264631277, −5.48136026305845552081475456766, −4.76281350849780962409744014883, −4.72840169249165702237381466792, −4.47602736197199566759139612991, −4.06637819543971443540780013244, −4.04304557074583223127565870918, −3.73746855740865562908603316494, −3.46248613724721306978545722969, −3.23169825624084040071190781216, −2.68414846342480031005116809245, −2.60092252171982828914386518938, −2.37532715194180432980707942282, −2.22636124926232743758354934975, −1.74592835914342932007214026742, −0.959123601835265283717060823176, −0.835671766477589081285097403245, −0.51891344622334452814825754826, 0.51891344622334452814825754826, 0.835671766477589081285097403245, 0.959123601835265283717060823176, 1.74592835914342932007214026742, 2.22636124926232743758354934975, 2.37532715194180432980707942282, 2.60092252171982828914386518938, 2.68414846342480031005116809245, 3.23169825624084040071190781216, 3.46248613724721306978545722969, 3.73746855740865562908603316494, 4.04304557074583223127565870918, 4.06637819543971443540780013244, 4.47602736197199566759139612991, 4.72840169249165702237381466792, 4.76281350849780962409744014883, 5.48136026305845552081475456766, 5.50741524443740044845264631277, 5.57817122955142603615790371469, 5.60373077247507310356585937024, 6.16206731111710385031210453306, 6.29642219959939020306772271874, 6.82829773912297807694231438333, 6.90253930288559556773994584391, 7.00445985598341461780265280614

Graph of the $Z$-function along the critical line