Properties

Label 8-1170e4-1.1-c1e4-0-7
Degree $8$
Conductor $1.874\times 10^{12}$
Sign $1$
Analytic cond. $7618.19$
Root an. cond. $3.05654$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s + 3·16-s + 20·19-s − 10·25-s + 12·29-s − 16·31-s − 32·41-s + 16·49-s − 16·59-s − 8·61-s − 4·64-s − 8·71-s − 40·76-s + 16·79-s − 16·89-s + 20·100-s + 28·101-s + 36·109-s − 24·116-s − 4·121-s + 32·124-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + ⋯
L(s)  = 1  − 4-s + 3/4·16-s + 4.58·19-s − 2·25-s + 2.22·29-s − 2.87·31-s − 4.99·41-s + 16/7·49-s − 2.08·59-s − 1.02·61-s − 1/2·64-s − 0.949·71-s − 4.58·76-s + 1.80·79-s − 1.69·89-s + 2·100-s + 2.78·101-s + 3.44·109-s − 2.22·116-s − 0.363·121-s + 2.87·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{8} \cdot 5^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{8} \cdot 5^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 3^{8} \cdot 5^{4} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(7618.19\)
Root analytic conductor: \(3.05654\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 3^{8} \cdot 5^{4} \cdot 13^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(1.102540555\)
\(L(\frac12)\) \(\approx\) \(1.102540555\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 + T^{2} )^{2} \)
3 \( 1 \)
5$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 + T^{2} )^{2} \)
good7$D_4\times C_2$ \( 1 - 16 T^{2} + 142 T^{4} - 16 p^{2} T^{6} + p^{4} T^{8} \)
11$C_2^2$ \( ( 1 + 2 T^{2} + p^{2} T^{4} )^{2} \)
17$D_4\times C_2$ \( 1 - 8 T^{2} + 94 T^{4} - 8 p^{2} T^{6} + p^{4} T^{8} \)
19$D_{4}$ \( ( 1 - 10 T + 58 T^{2} - 10 p T^{3} + p^{2} T^{4} )^{2} \)
23$D_4\times C_2$ \( 1 - 32 T^{2} + 814 T^{4} - 32 p^{2} T^{6} + p^{4} T^{8} \)
29$D_{4}$ \( ( 1 - 6 T + 22 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2} \)
31$C_2$ \( ( 1 + 4 T + p T^{2} )^{4} \)
37$D_4\times C_2$ \( 1 + 20 T^{2} + 1558 T^{4} + 20 p^{2} T^{6} + p^{4} T^{8} \)
41$C_4$ \( ( 1 + 16 T + 126 T^{2} + 16 p T^{3} + p^{2} T^{4} )^{2} \)
43$D_4\times C_2$ \( 1 - 124 T^{2} + 7222 T^{4} - 124 p^{2} T^{6} + p^{4} T^{8} \)
47$D_4\times C_2$ \( 1 + 4 T^{2} - 698 T^{4} + 4 p^{2} T^{6} + p^{4} T^{8} \)
53$D_4\times C_2$ \( 1 - 140 T^{2} + 9238 T^{4} - 140 p^{2} T^{6} + p^{4} T^{8} \)
59$C_4$ \( ( 1 + 8 T + 114 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{2} \)
61$D_{4}$ \( ( 1 + 4 T + 46 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
67$C_2$ \( ( 1 - p T^{2} )^{4} \)
71$C_4$ \( ( 1 + 4 T + 126 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
73$D_4\times C_2$ \( 1 - 40 T^{2} + 8638 T^{4} - 40 p^{2} T^{6} + p^{4} T^{8} \)
79$C_2$ \( ( 1 - 4 T + p T^{2} )^{4} \)
83$D_4\times C_2$ \( 1 - 140 T^{2} + 13558 T^{4} - 140 p^{2} T^{6} + p^{4} T^{8} \)
89$D_{4}$ \( ( 1 + 8 T + 174 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{2} \)
97$D_4\times C_2$ \( 1 - 280 T^{2} + 36798 T^{4} - 280 p^{2} T^{6} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.07809524306551318955255060465, −6.91033823705214349534164527448, −6.72184024052943561211342506970, −6.07108019802061408245793658620, −5.92384333087476199343330538974, −5.90130607404530129969061503469, −5.76403880007138455769491397093, −5.29936802720990945089762401949, −5.10950365093518285800547889106, −4.98890474165195066997866544501, −4.89888016355259695651438855418, −4.56119144426292483518143247032, −4.29769733559596739031261590123, −3.77371278341399922541081479755, −3.67555559451482835302121707747, −3.36298921153972273060258796808, −3.35219085642063347919301023193, −3.08162627197731702120737937252, −2.84194299343676217612214822296, −2.14464046230874063237771012138, −1.96755688986959286829733024527, −1.57933089937505286183862185698, −1.24262176852662423923256635109, −0.915287690756451568720356901436, −0.26201167215684390288338673534, 0.26201167215684390288338673534, 0.915287690756451568720356901436, 1.24262176852662423923256635109, 1.57933089937505286183862185698, 1.96755688986959286829733024527, 2.14464046230874063237771012138, 2.84194299343676217612214822296, 3.08162627197731702120737937252, 3.35219085642063347919301023193, 3.36298921153972273060258796808, 3.67555559451482835302121707747, 3.77371278341399922541081479755, 4.29769733559596739031261590123, 4.56119144426292483518143247032, 4.89888016355259695651438855418, 4.98890474165195066997866544501, 5.10950365093518285800547889106, 5.29936802720990945089762401949, 5.76403880007138455769491397093, 5.90130607404530129969061503469, 5.92384333087476199343330538974, 6.07108019802061408245793658620, 6.72184024052943561211342506970, 6.91033823705214349534164527448, 7.07809524306551318955255060465

Graph of the $Z$-function along the critical line