Properties

Label 8-1170e4-1.1-c1e4-0-29
Degree $8$
Conductor $1.874\times 10^{12}$
Sign $1$
Analytic cond. $7618.19$
Root an. cond. $3.05654$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s + 10·4-s + 2·5-s − 20·8-s − 8·10-s + 8·11-s + 35·16-s + 10·17-s + 20·20-s − 32·22-s + 8·23-s + 5·25-s − 20·31-s − 56·32-s − 40·34-s − 40·40-s − 4·41-s + 2·43-s + 80·44-s − 32·46-s + 26·49-s − 20·50-s − 20·53-s + 16·55-s + 12·59-s + 8·61-s + 80·62-s + ⋯
L(s)  = 1  − 2.82·2-s + 5·4-s + 0.894·5-s − 7.07·8-s − 2.52·10-s + 2.41·11-s + 35/4·16-s + 2.42·17-s + 4.47·20-s − 6.82·22-s + 1.66·23-s + 25-s − 3.59·31-s − 9.89·32-s − 6.85·34-s − 6.32·40-s − 0.624·41-s + 0.304·43-s + 12.0·44-s − 4.71·46-s + 26/7·49-s − 2.82·50-s − 2.74·53-s + 2.15·55-s + 1.56·59-s + 1.02·61-s + 10.1·62-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{8} \cdot 5^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{8} \cdot 5^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 3^{8} \cdot 5^{4} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(7618.19\)
Root analytic conductor: \(3.05654\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 3^{8} \cdot 5^{4} \cdot 13^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(1.935568413\)
\(L(\frac12)\) \(\approx\) \(1.935568413\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 + T )^{4} \)
3 \( 1 \)
5$C_2^2$ \( 1 - 2 T - T^{2} - 2 p T^{3} + p^{2} T^{4} \)
13$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
good7$C_2^2$ \( ( 1 - 13 T^{2} + p^{2} T^{4} )^{2} \)
11$D_4\times C_2$ \( 1 - 8 T + 32 T^{2} - 104 T^{3} + 334 T^{4} - 104 p T^{5} + 32 p^{2} T^{6} - 8 p^{3} T^{7} + p^{4} T^{8} \)
17$C_2^2$$\times$$C_2^2$ \( ( 1 - 8 T + 47 T^{2} - 8 p T^{3} + p^{2} T^{4} )( 1 - 2 T - 13 T^{2} - 2 p T^{3} + p^{2} T^{4} ) \)
19$C_2^3$ \( 1 - 526 T^{4} + p^{4} T^{8} \)
23$D_4\times C_2$ \( 1 - 8 T + 32 T^{2} - 200 T^{3} + 1246 T^{4} - 200 p T^{5} + 32 p^{2} T^{6} - 8 p^{3} T^{7} + p^{4} T^{8} \)
29$D_4\times C_2$ \( 1 - 60 T^{2} + 2282 T^{4} - 60 p^{2} T^{6} + p^{4} T^{8} \)
31$C_2^2$ \( ( 1 + 10 T + 50 T^{2} + 10 p T^{3} + p^{2} T^{4} )^{2} \)
37$D_4\times C_2$ \( 1 - 122 T^{2} + 6411 T^{4} - 122 p^{2} T^{6} + p^{4} T^{8} \)
41$D_4\times C_2$ \( 1 + 4 T + 8 T^{2} - 44 T^{3} - 2462 T^{4} - 44 p T^{5} + 8 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} \)
43$D_4\times C_2$ \( 1 - 2 T + 2 T^{2} + 156 T^{3} - 2473 T^{4} + 156 p T^{5} + 2 p^{2} T^{6} - 2 p^{3} T^{7} + p^{4} T^{8} \)
47$D_4\times C_2$ \( 1 - 174 T^{2} + 11939 T^{4} - 174 p^{2} T^{6} + p^{4} T^{8} \)
53$D_4\times C_2$ \( 1 + 20 T + 200 T^{2} + 1580 T^{3} + 11806 T^{4} + 1580 p T^{5} + 200 p^{2} T^{6} + 20 p^{3} T^{7} + p^{4} T^{8} \)
59$D_4\times C_2$ \( 1 - 12 T + 72 T^{2} - 852 T^{3} + 9938 T^{4} - 852 p T^{5} + 72 p^{2} T^{6} - 12 p^{3} T^{7} + p^{4} T^{8} \)
61$D_{4}$ \( ( 1 - 4 T + 78 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
67$D_{4}$ \( ( 1 - 18 T + 212 T^{2} - 18 p T^{3} + p^{2} T^{4} )^{2} \)
71$D_4\times C_2$ \( 1 + 10 T + 50 T^{2} + 100 T^{3} - 3521 T^{4} + 100 p T^{5} + 50 p^{2} T^{6} + 10 p^{3} T^{7} + p^{4} T^{8} \)
73$C_2$ \( ( 1 + p T^{2} )^{4} \)
79$D_4\times C_2$ \( 1 - 212 T^{2} + 21018 T^{4} - 212 p^{2} T^{6} + p^{4} T^{8} \)
83$D_4\times C_2$ \( 1 - 260 T^{2} + 29706 T^{4} - 260 p^{2} T^{6} + p^{4} T^{8} \)
89$D_4\times C_2$ \( 1 + 20 T + 200 T^{2} + 1700 T^{3} + 14434 T^{4} + 1700 p T^{5} + 200 p^{2} T^{6} + 20 p^{3} T^{7} + p^{4} T^{8} \)
97$D_{4}$ \( ( 1 + 10 T + 192 T^{2} + 10 p T^{3} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.17375586450283923429726108540, −6.90842230140822120499082726155, −6.84907533361466127455852495639, −6.47169796527118263132842335370, −6.10501552807487518872148893921, −6.10493285974461232821835100528, −5.66868525508449572952508839069, −5.61394476433454150993086069758, −5.47204185015736159317087445330, −5.15920003972097108055202100366, −4.77082982932744787131488253711, −4.60177308389216887421123301944, −3.82597650809635659707638937230, −3.75627943981277175626955534079, −3.65691613669291354768337129283, −3.49232942677597391224088407902, −3.04440372772912046739631515881, −2.68843977059285732254792068327, −2.38431552496353031339739528707, −2.14431871393003410585023588665, −1.67076141726905268868912326216, −1.40409397905757976555982375723, −1.34415129619409828675840338386, −0.73940129900689794477459905047, −0.67840345039972789167744680862, 0.67840345039972789167744680862, 0.73940129900689794477459905047, 1.34415129619409828675840338386, 1.40409397905757976555982375723, 1.67076141726905268868912326216, 2.14431871393003410585023588665, 2.38431552496353031339739528707, 2.68843977059285732254792068327, 3.04440372772912046739631515881, 3.49232942677597391224088407902, 3.65691613669291354768337129283, 3.75627943981277175626955534079, 3.82597650809635659707638937230, 4.60177308389216887421123301944, 4.77082982932744787131488253711, 5.15920003972097108055202100366, 5.47204185015736159317087445330, 5.61394476433454150993086069758, 5.66868525508449572952508839069, 6.10493285974461232821835100528, 6.10501552807487518872148893921, 6.47169796527118263132842335370, 6.84907533361466127455852495639, 6.90842230140822120499082726155, 7.17375586450283923429726108540

Graph of the $Z$-function along the critical line