Properties

Label 8-1170e4-1.1-c1e4-0-19
Degree $8$
Conductor $1.874\times 10^{12}$
Sign $1$
Analytic cond. $7618.19$
Root an. cond. $3.05654$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 12·13-s − 16-s + 16·19-s − 8·25-s − 12·37-s − 32·43-s − 8·61-s − 36·73-s + 64·79-s − 4·97-s + 16·103-s − 20·109-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 82·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + ⋯
L(s)  = 1  + 3.32·13-s − 1/4·16-s + 3.67·19-s − 8/5·25-s − 1.97·37-s − 4.87·43-s − 1.02·61-s − 4.21·73-s + 7.20·79-s − 0.406·97-s + 1.57·103-s − 1.91·109-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 6.30·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{8} \cdot 5^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{8} \cdot 5^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 3^{8} \cdot 5^{4} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(7618.19\)
Root analytic conductor: \(3.05654\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 3^{8} \cdot 5^{4} \cdot 13^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(4.598474259\)
\(L(\frac12)\) \(\approx\) \(4.598474259\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2^2$ \( 1 + T^{4} \)
3 \( 1 \)
5$C_2^2$ \( 1 + 8 T^{2} + p^{2} T^{4} \)
13$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
good7$C_2^2$ \( ( 1 + p^{2} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 + p^{2} T^{4} )^{2} \)
17$C_2^2$ \( ( 1 - 32 T^{2} + p^{2} T^{4} )^{2} \)
19$C_2^2$ \( ( 1 - 8 T + 32 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 - 14 T^{2} + p^{2} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 - 40 T^{2} + p^{2} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 + p^{2} T^{4} )^{2} \)
37$C_2^2$ \( ( 1 + 6 T + 18 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
41$C_2^2$ \( ( 1 + p^{2} T^{4} )^{2} \)
43$C_2$ \( ( 1 + 8 T + p T^{2} )^{4} \)
47$C_2^2$ \( ( 1 + p^{2} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 + 56 T^{2} + p^{2} T^{4} )^{2} \)
59$C_2^3$ \( 1 - 4046 T^{4} + p^{4} T^{8} \)
61$C_2$ \( ( 1 + 2 T + p T^{2} )^{4} \)
67$C_2^2$ \( ( 1 + p^{2} T^{4} )^{2} \)
71$C_2^3$ \( 1 + 5794 T^{4} + p^{4} T^{8} \)
73$C_2^2$ \( ( 1 + 18 T + 162 T^{2} + 18 p T^{3} + p^{2} T^{4} )^{2} \)
79$C_2$ \( ( 1 - 16 T + p T^{2} )^{4} \)
83$C_2^3$ \( 1 + 8722 T^{4} + p^{4} T^{8} \)
89$C_2^3$ \( 1 - 15518 T^{4} + p^{4} T^{8} \)
97$C_2^2$ \( ( 1 + 2 T + 2 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.91299351532637768288188242905, −6.80283901529697358486118445062, −6.63215696155212453514007099102, −6.12366772622573330064621939201, −6.04045312559177259296006463979, −6.01379649692109139475835492563, −5.83928301931656073563105830684, −5.18753732371724558055023104424, −5.15077760293663593620197948421, −5.11072879495428417132829126567, −5.01126847443075777366080717253, −4.42695048070757368741357597826, −4.07939156550319562784191123665, −3.89823075083512290365013791722, −3.66272953494646273664356568108, −3.26948047967258636595516237607, −3.24655572632053368147659495095, −3.18730023546970179537677952456, −2.93715794696060300502930368511, −2.04555647302844434451047677508, −1.73438810106848116807734246571, −1.72937902140355706449893069152, −1.44876358567937925324216587932, −0.839873750259314010956275594183, −0.53963126678503738045683839721, 0.53963126678503738045683839721, 0.839873750259314010956275594183, 1.44876358567937925324216587932, 1.72937902140355706449893069152, 1.73438810106848116807734246571, 2.04555647302844434451047677508, 2.93715794696060300502930368511, 3.18730023546970179537677952456, 3.24655572632053368147659495095, 3.26948047967258636595516237607, 3.66272953494646273664356568108, 3.89823075083512290365013791722, 4.07939156550319562784191123665, 4.42695048070757368741357597826, 5.01126847443075777366080717253, 5.11072879495428417132829126567, 5.15077760293663593620197948421, 5.18753732371724558055023104424, 5.83928301931656073563105830684, 6.01379649692109139475835492563, 6.04045312559177259296006463979, 6.12366772622573330064621939201, 6.63215696155212453514007099102, 6.80283901529697358486118445062, 6.91299351532637768288188242905

Graph of the $Z$-function along the critical line