Properties

Label 8-1152e4-1.1-c3e4-0-7
Degree $8$
Conductor $1.761\times 10^{12}$
Sign $1$
Analytic cond. $2.13439\times 10^{7}$
Root an. cond. $8.24440$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 280·17-s − 140·25-s + 728·41-s − 348·49-s + 3.64e3·73-s + 2.18e3·89-s − 1.96e3·97-s + 3.64e3·113-s + 1.40e3·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 8.14e3·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + ⋯
L(s)  = 1  − 3.99·17-s − 1.11·25-s + 2.77·41-s − 1.01·49-s + 5.83·73-s + 2.60·89-s − 2.05·97-s + 3.03·113-s + 1.05·121-s + 0.000698·127-s + 0.000666·131-s + 0.000623·137-s + 0.000610·139-s + 0.000549·149-s + 0.000538·151-s + 0.000508·157-s + 0.000480·163-s + 0.000463·167-s + 3.70·169-s + 0.000439·173-s + 0.000417·179-s + 0.000410·181-s + 0.000378·191-s + 0.000372·193-s + 0.000361·197-s + 0.000356·199-s + 0.000326·211-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{28} \cdot 3^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(4-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{28} \cdot 3^{8}\right)^{s/2} \, \Gamma_{\C}(s+3/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{28} \cdot 3^{8}\)
Sign: $1$
Analytic conductor: \(2.13439\times 10^{7}\)
Root analytic conductor: \(8.24440\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{28} \cdot 3^{8} ,\ ( \ : 3/2, 3/2, 3/2, 3/2 ),\ 1 )\)

Particular Values

\(L(2)\) \(\approx\) \(3.992014478\)
\(L(\frac12)\) \(\approx\) \(3.992014478\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$C_2^2$ \( ( 1 + 14 p T^{2} + p^{6} T^{4} )^{2} \)
7$C_2^2$ \( ( 1 + 174 T^{2} + p^{6} T^{4} )^{2} \)
11$C_2$ \( ( 1 - 58 T + p^{3} T^{2} )^{2}( 1 + 58 T + p^{3} T^{2} )^{2} \)
13$C_2^2$ \( ( 1 - 4074 T^{2} + p^{6} T^{4} )^{2} \)
17$C_2$ \( ( 1 + 70 T + p^{3} T^{2} )^{4} \)
19$C_2^2$ \( ( 1 - 6958 T^{2} + p^{6} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 - 754 T^{2} + p^{6} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 - 33098 T^{2} + p^{6} T^{4} )^{2} \)
31$C_2$ \( ( 1 + p^{3} T^{2} )^{4} \)
37$C_2^2$ \( ( 1 + 39814 T^{2} + p^{6} T^{4} )^{2} \)
41$C_2$ \( ( 1 - 182 T + p^{3} T^{2} )^{4} \)
43$C_2^2$ \( ( 1 - 141374 T^{2} + p^{6} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 + 107294 T^{2} + p^{6} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 - 282074 T^{2} + p^{6} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 - 403998 T^{2} + p^{6} T^{4} )^{2} \)
61$C_2^2$ \( ( 1 - 399882 T^{2} + p^{6} T^{4} )^{2} \)
67$C_2^2$ \( ( 1 - 552526 T^{2} + p^{6} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 + 703022 T^{2} + p^{6} T^{4} )^{2} \)
73$C_2$ \( ( 1 - 910 T + p^{3} T^{2} )^{4} \)
79$C_2^2$ \( ( 1 + 525278 T^{2} + p^{6} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 - 632814 T^{2} + p^{6} T^{4} )^{2} \)
89$C_2$ \( ( 1 - 546 T + p^{3} T^{2} )^{4} \)
97$C_2$ \( ( 1 + 490 T + p^{3} T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.62459356827557796087651055847, −6.50934994326694564621360151637, −6.29787923646262909971415348053, −6.05830774221144873085812928053, −5.71921466156151293856638030712, −5.43000064196202396090976303485, −5.31008946437703544524167275836, −4.96347475837193427802990757268, −4.72019481021752679705175680594, −4.51196921198540720194854863944, −4.40899517226769976302220527345, −4.00552936213158347636781608641, −3.83455927725786060119868363253, −3.78728646948034556270840916867, −3.22418600486866050122847410967, −3.10430814164095505884132287060, −2.42838453537155661987102857042, −2.40982915273569669820312180834, −2.35189158228947013752104931061, −1.88337866719055649217695386256, −1.81569330885975492429446226552, −1.25198477479259634076190784347, −0.70515643916818248835163208312, −0.47231757526067068572610863332, −0.35945147363721191724828871066, 0.35945147363721191724828871066, 0.47231757526067068572610863332, 0.70515643916818248835163208312, 1.25198477479259634076190784347, 1.81569330885975492429446226552, 1.88337866719055649217695386256, 2.35189158228947013752104931061, 2.40982915273569669820312180834, 2.42838453537155661987102857042, 3.10430814164095505884132287060, 3.22418600486866050122847410967, 3.78728646948034556270840916867, 3.83455927725786060119868363253, 4.00552936213158347636781608641, 4.40899517226769976302220527345, 4.51196921198540720194854863944, 4.72019481021752679705175680594, 4.96347475837193427802990757268, 5.31008946437703544524167275836, 5.43000064196202396090976303485, 5.71921466156151293856638030712, 6.05830774221144873085812928053, 6.29787923646262909971415348053, 6.50934994326694564621360151637, 6.62459356827557796087651055847

Graph of the $Z$-function along the critical line