Properties

Label 8-1152e4-1.1-c2e4-0-7
Degree $8$
Conductor $1.761\times 10^{12}$
Sign $1$
Analytic cond. $970845.$
Root an. cond. $5.60265$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 96·25-s − 196·49-s + 384·73-s + 576·97-s − 484·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 476·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + 233-s + ⋯
L(s)  = 1  + 3.83·25-s − 4·49-s + 5.26·73-s + 5.93·97-s − 4·121-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + 0.00613·163-s + 0.00598·167-s + 2.81·169-s + 0.00578·173-s + 0.00558·179-s + 0.00552·181-s + 0.00523·191-s + 0.00518·193-s + 0.00507·197-s + 0.00502·199-s + 0.00473·211-s + 0.00448·223-s + 0.00440·227-s + 0.00436·229-s + 0.00429·233-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{28} \cdot 3^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{28} \cdot 3^{8}\right)^{s/2} \, \Gamma_{\C}(s+1)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{28} \cdot 3^{8}\)
Sign: $1$
Analytic conductor: \(970845.\)
Root analytic conductor: \(5.60265\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{28} \cdot 3^{8} ,\ ( \ : 1, 1, 1, 1 ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(2.575559598\)
\(L(\frac12)\) \(\approx\) \(2.575559598\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$C_2^2$ \( ( 1 - 48 T^{2} + p^{4} T^{4} )^{2} \)
7$C_2$ \( ( 1 + p^{2} T^{2} )^{4} \)
11$C_2$ \( ( 1 + p^{2} T^{2} )^{4} \)
13$C_2$ \( ( 1 - 24 T + p^{2} T^{2} )^{2}( 1 + 24 T + p^{2} T^{2} )^{2} \)
17$C_2^2$ \( ( 1 + 480 T^{2} + p^{4} T^{4} )^{2} \)
19$C_1$$\times$$C_1$ \( ( 1 - p T )^{4}( 1 + p T )^{4} \)
23$C_1$$\times$$C_1$ \( ( 1 - p T )^{4}( 1 + p T )^{4} \)
29$C_2^2$ \( ( 1 - 1680 T^{2} + p^{4} T^{4} )^{2} \)
31$C_2$ \( ( 1 + p^{2} T^{2} )^{4} \)
37$C_2$ \( ( 1 - 70 T + p^{2} T^{2} )^{2}( 1 + 70 T + p^{2} T^{2} )^{2} \)
41$C_2^2$ \( ( 1 + 1440 T^{2} + p^{4} T^{4} )^{2} \)
43$C_1$$\times$$C_1$ \( ( 1 - p T )^{4}( 1 + p T )^{4} \)
47$C_1$$\times$$C_1$ \( ( 1 - p T )^{4}( 1 + p T )^{4} \)
53$C_2^2$ \( ( 1 + 5040 T^{2} + p^{4} T^{4} )^{2} \)
59$C_2$ \( ( 1 + p^{2} T^{2} )^{4} \)
61$C_2$ \( ( 1 - 22 T + p^{2} T^{2} )^{2}( 1 + 22 T + p^{2} T^{2} )^{2} \)
67$C_1$$\times$$C_1$ \( ( 1 - p T )^{4}( 1 + p T )^{4} \)
71$C_1$$\times$$C_1$ \( ( 1 - p T )^{4}( 1 + p T )^{4} \)
73$C_2$ \( ( 1 - 96 T + p^{2} T^{2} )^{4} \)
79$C_2$ \( ( 1 + p^{2} T^{2} )^{4} \)
83$C_2$ \( ( 1 + p^{2} T^{2} )^{4} \)
89$C_2^2$ \( ( 1 + 12480 T^{2} + p^{4} T^{4} )^{2} \)
97$C_2$ \( ( 1 - 144 T + p^{2} T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.72636004993601581078439126078, −6.65192013682059792633711609475, −6.46810751581320529497343579966, −6.16491310470937410989795935132, −6.12289154755751810997939994481, −5.60225501004370182483661787596, −5.31411277635712928342689350984, −5.21407872125335133258923807327, −4.92712922070975205200476765346, −4.74847545848867814154751801821, −4.60662634284877627184308172637, −4.55328357602598938318646759763, −3.83779762637665749267530585829, −3.65265284661471654183532101022, −3.57484124200022162205680399235, −3.17754740210041464340409088623, −2.99364016217899380456399946920, −2.82612526756517718307947603279, −2.22137680561867554141745221398, −2.15576274935801890407235415075, −1.88411263827581358936132554817, −1.20259986135323161180100332588, −1.06584785149749899323945464687, −0.815554670027512344151957023280, −0.23283083058212024976003199615, 0.23283083058212024976003199615, 0.815554670027512344151957023280, 1.06584785149749899323945464687, 1.20259986135323161180100332588, 1.88411263827581358936132554817, 2.15576274935801890407235415075, 2.22137680561867554141745221398, 2.82612526756517718307947603279, 2.99364016217899380456399946920, 3.17754740210041464340409088623, 3.57484124200022162205680399235, 3.65265284661471654183532101022, 3.83779762637665749267530585829, 4.55328357602598938318646759763, 4.60662634284877627184308172637, 4.74847545848867814154751801821, 4.92712922070975205200476765346, 5.21407872125335133258923807327, 5.31411277635712928342689350984, 5.60225501004370182483661787596, 6.12289154755751810997939994481, 6.16491310470937410989795935132, 6.46810751581320529497343579966, 6.65192013682059792633711609475, 6.72636004993601581078439126078

Graph of the $Z$-function along the critical line